Free vibration analysis of large deformed curved beam incorporating rotary inertia and shear deformation effects and its experimental validation

Author(s):  
Sushanta Ghuku ◽  
Kashinath Saha

The paper theoretically and experimentally analyzes free vibration characteristics of statically loaded moving boundary type curved beam considering rotary inertia and shear deformation effects. Effects of rotary inertia and shear deformation are observed for different thickness to span ratios of curved beam. The subject problem is decoupled into two interrelated problems: determining equilibrium configuration under static load and finding the corresponding free vibration frequency. The static problem is analyzed incrementally in body fitted curvilinear frame as it involves geometric nonlinearity due to generalized curvature, large deformation, and moving boundaries. Variational energy principle is employed to derive governing equation. The nonlinear governing equation associated with complicated boundary conditions is solved through iterative geometry updation. Once static problem is solved for current load step, governing equation for dynamic characteristics is derived using Hamilton’s principle. The governing equation gets linearized by using the static configuration, which finally yields a linear eigenvalue problem. Experiment is performed in a dedicated setup with two master leafs having different thickness to span ratios. The roller supported specimens are excited with an instrumented hammer and response signals are captured by accelerometers. The excitation and response signals are recorded using HBM-MX840B data acquisition system. Frequency response functions of the curved beam systems under different static loads are obtained from postprocessing of the dynamic signals in MATLAB®. First two natural frequencies of the specimens are noted from the experimental results and the corresponding theoretical results are generated. The specimens are also modeled in ABAQUS® CAE and finite element results are computed. Comparison between the theoretical, experimental, and finite element results validates the present model. The study also provides some meaningful observations on effects of rotary inertia and shear deformation. Based on the observations, more results are generated for different thickness to span ratios and findings are reported suitably.

2016 ◽  
Vol 54 (3) ◽  
pp. 402 ◽  
Author(s):  
Tran Huu Quoc ◽  
Tran Minh Tu ◽  
Nguyen Van Long

In this paper, a new eight-unknown shear deformation theory is developed for bending and free vibration analysis of functionally graded plates by finite element method. The theory based on full twelve-unknown higher order shear deformation theory, simultaneously satisfy zeros transverse stresses at top and bottom surface of FG plates. A four-node rectangular element with sixteen degrees of freedom per node is used. Poisson’s ratios, Young’s moduli and material densities vary continuously in thickness direction according to the volume fraction of constituents which is modeled as power law functions. Results are verified with available results in the literature. Parametric studies are performed for different power law index, side-to-thickness ratios.


Author(s):  
Sushanta Ghuku ◽  
Kashi Nath Saha

The present article theoretically and experimentally investigates free vibration characteristics of generalized curved beams with moving boundaries. The dynamic behavior is characterized about deformed configuration, attained under different concentrated loads, and rigidly connected to the midpoint of the beam. The coupled static and dynamic analysis of the geometric nonlinear problem is decomposed into two parts: the static problem dealing with large deformed configuration and the dynamic problem dealing with small amplitude free vibration of the deformed configuration beam. The analysis is carried out incrementally in embedded curvilinear coordinate frames using variational principle. The governing equation of the static problem is derived for a combined effect of bending and center line extension. The governing equation for free vibration is derived at the particular configuration of the updated beam geometry, using Hamilton's principle. The comparison between the numerical and experimental results successfully validates the proposed semi-analytical model and leads toward some meaningful observations.


Sign in / Sign up

Export Citation Format

Share Document