functionally graded plates
Recently Published Documents


TOTAL DOCUMENTS

612
(FIVE YEARS 137)

H-INDEX

76
(FIVE YEARS 10)

2022 ◽  
Vol 279 ◽  
pp. 114743
Author(s):  
Mehmet Dorduncu ◽  
Ibrahim Olmus ◽  
Timon Rabczuk

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7845
Author(s):  
Quanquan Yang ◽  
He Cao ◽  
Youcheng Tang ◽  
Yun Li ◽  
Xiaogang Chen

An experimental investigation is presented for the stress distributions in functionally graded plates containing a circular hole. On the basis of the authors’ previously constructed theoretical model, two kinds of graded plates made of discrete rings with increasing or decreasing Young’s modulus were designed and fabricated in virtue of multi-material 3D printing. The printed graded plates had accurate size, smooth surface, and good interface. The strains of two graded plates under uniaxial tension were measured experimentally using strain gages. The stresses were calculated within the range of linear elastic from the measured strains and compared with analytical theory. It is found that the experimental results are consistent with the theoretical results, and both of them indicate that the stress concentration around the hole reduces obviously in graded plates with radially increasing Young’s modulus, in comparison with that of perforated homogenous plates. The successful experiment in the paper provides a good basis and support for the establishment of theoretical models and promotes the in-depth development of the research field of stress concentration in functionally graded plates.


Sign in / Sign up

Export Citation Format

Share Document