timoshenko beam
Recently Published Documents


TOTAL DOCUMENTS

1426
(FIVE YEARS 215)

H-INDEX

63
(FIVE YEARS 7)

Author(s):  
Oleksiy Kyrkach ◽  
Havin Valerij Havin ◽  
Borys Kyrkach

In this paper a mathematical model and computational tool are developed for the static analysis of multi-bearing spindle shafts with nonlinear elastic supports. Based on the Timoshenko beam theory a resolving system of equations is obtained that takes into account the nonlinear dependence of the bearing stiffness on the reaction forces acting upon them. A solution method is proposed and appropriate software is developed that implements the static analysis of multi-support spindle shafts with non-linearly elastic bearings in MATLAB environment. Key words: spindle, shaft, nonlinear elastic support, multi-bearing, nonlinear elastic stiffness, Timoshenko beam.


Author(s):  
Haitao Yu ◽  
Xizhuo Chen ◽  
Pan Li

An analytical solution is derived for dynamic response of a modified Timoshenko beam with an infinite length resting on visco-Pasternak foundation subjected to arbitrary excitations. The modified Timoshenko beam model is employed to further consider the rotary inertia caused by the shear deformation of a beam, which is usually neglected by the traditional Timoshenko beam model. By using Fourier and Laplace transforms, the governing equations of motion are transformed from partial differential forms into algebraic forms in the Laplace domain. The analytical solution is then converted into the time domain by applying inverse transforms and convolution theorem. Some widely used loading cases, including moving line loads for nondestructive testing, travelling loads for seismic wave passage, and impulsive load for impact vibration, are also discussed in this paper. The proposed generic solutions are verified by comparing their degraded results to the known solutions in other literature. Several examples are performed to further investigate the differences of the beam responses obtained from the modified and the traditional Timoshenko beam models. Results show that the modified Timoshenko beam simulates the beam responses more accurately than the traditional model, especially under the dynamic loads with a high frequency. The analytical solutions proposed in this paper can be conveniently used for design and applied as an effective tool for practitioners.


2021 ◽  
Author(s):  
Phuong-Tung Pham ◽  
Gyoung-Hahn Kim ◽  
Quoc-Chi Nguyen ◽  
Keum-Shik Hong

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3123
Author(s):  
Miroslav Repka ◽  
Jan Sladek ◽  
Vladimir Sladek

The Timoshenko beam model is applied to the analysis of the flexoelectric effect for a cantilever beam under large deformations. The geometric nonlinearity with von Kármán strains is considered. The nonlinear system of ordinary differential equations (ODE) for beam deflection and rotation are derived. Moreover, this nonlinear system is linearized for each load increment, where it is solved iteratively. For the vanishing flexoelectric coefficient, the governing equations lead to the classical Timoshenko beam model. Furthermore, the influence of the flexoelectricity coefficient and the microstructural length-scale parameter on the beam deflection and the induced electric intensity is investigated.


2021 ◽  
Vol 10 (4) ◽  
pp. 253-268
Author(s):  
Ruhi Aydin

In the static analysis of beam-column systems using matrix methods, polynomials are using as the shape functions. The transverse deflections along the beam axis, including the axial- flexural effects in the beam-column element, are not adequately described by polynomials. As an alternative method, the element stiffness matrix is modeling using stability parameters. The shape functions which are obtaining using the stability parameters are more compatible with the system’s behavior. A mass matrix used in the dynamic analysis is evaluated using the same shape functions as those used for derivations of the stiffness coefficients and is called a consistent mass matrix. In this study, the stiffness and consistent mass matrices for prismatic three-dimensional Bernoulli-Euler and Timoshenko beam-columns are proposed with consideration for the axial-flexural interactions and shear deformations associated with transverse deflections along the beam axis. The second-order effects, critical buckling loads, and eigenvalues are determined. According to the author’s knowledge, this study is the first report of the derivations of consistent mass matrices of Bernoulli-Euler and Timoshenko beam-columns under the effect of axially compressive or tensile force.


2021 ◽  
Vol 6 (7) ◽  
pp. 20-32
Author(s):  
Abdarrhim M. Ahmed ◽  
Abdussalam M. Rifai

Obtaining reliable and efficient results of a specified problem solution depends upon understanding the strategy of the method of analysis, which is emanated from all related physical basics of the problem, formulated with master mathematical tools to give its governing mathematical model. These two categories require deep study in a wide range of references and literature in order not only to apply the method professionally, but also to look for improvements, developments, and contributions in the field of the method. Consequently, although Euler-Bernoulli and Timoshenko beam theories are the oldest ones, but surely, they represent a cornerstone for most modern methods in structural analysis; In what follows, a detailed revision of these theories and their applications analytically and in numerical style is presented in a proper and simplified entrance to be able to understand more advanced topics such as thin and thick plate theories. Illustrative examples will be used to show and discuss the methods.


Sign in / Sign up

Export Citation Format

Share Document