scholarly journals Fabric defect detection based on deep-handcrafted feature and weighted low-rank matrix representation

2021 ◽  
Vol 16 ◽  
pp. 155892502110084
Author(s):  
Chunlei Li ◽  
Ban Jiang ◽  
Zhoufeng Liu ◽  
Yan Dong ◽  
Shuili Tang ◽  
...  

In the process of textile production, automatic defect detection plays a key role in controlling product quality. Due to the complex texture features of fabric image, the traditional detection methods have poor adaptability, and low detection accuracy. The low rank representation model can divide the image into the low rank background and sparse object, and has proven suitable for fabric defect detection. However, how to further effectively characterize the fabric texture is still problematic in this kind of method. Moreover, most of them adopt nuclear norm optimization algorithm to solve the low rank model, which treat every singular value in the matrix equally. However, in the task of fabric defect detection, different singular values of feature matrix represent different information. In this paper, we proposed a novel fabric defect detection method based on the deep-handcrafted feature and weighted low-rank matrix representation. The feature characterization ability is effectively improved by fusing the global deep feature extracted by VGG network and the handcrafted low-level feature. Moreover, a weighted low-rank representation model is constructed to treat the matrix singular values differently by different weights, thus the most distinguishing feature of fabric texture can be preserved, which can efficiently outstand the defect and suppress the background. Qualitative and quantitative experiments on two public datasets show that our proposed method outperforms the state-of-the-art methods.

2017 ◽  
Vol 78 (1) ◽  
pp. 99-124 ◽  
Author(s):  
Peng Li ◽  
Junli Liang ◽  
Xubang Shen ◽  
Minghua Zhao ◽  
Liansheng Sui

2020 ◽  
Vol 40 (4) ◽  
pp. 2626-2651
Author(s):  
André Uschmajew ◽  
Bart Vandereycken

Abstract The absence of spurious local minima in certain nonconvex low-rank matrix recovery problems has been of recent interest in computer science, machine learning and compressed sensing since it explains the convergence of some low-rank optimization methods to global optima. One such example is low-rank matrix sensing under restricted isometry properties (RIPs). It can be formulated as a minimization problem for a quadratic function on the Riemannian manifold of low-rank matrices, with a positive semidefinite Riemannian Hessian that acts almost like an identity on low-rank matrices. In this work new estimates for singular values of local minima for such problems are given, which lead to improved bounds on RIP constants to ensure absence of nonoptimal local minima and sufficiently negative curvature at all other critical points. A geometric viewpoint is taken, which is inspired by the fact that the Euclidean distance function to a rank-$k$ matrix possesses no critical points on the corresponding embedded submanifold of rank-$k$ matrices except for the single global minimum.


Author(s):  
Andrew D McRae ◽  
Mark A Davenport

Abstract This paper considers the problem of estimating a low-rank matrix from the observation of all or a subset of its entries in the presence of Poisson noise. When we observe all entries, this is a problem of matrix denoising; when we observe only a subset of the entries, this is a problem of matrix completion. In both cases, we exploit an assumption that the underlying matrix is low-rank. Specifically, we analyse several estimators, including a constrained nuclear-norm minimization program, nuclear-norm regularized least squares and a non-convex constrained low-rank optimization problem. We show that for all three estimators, with high probability, we have an upper error bound (in the Frobenius norm error metric) that depends on the matrix rank, the fraction of the elements observed and the maximal row and column sums of the true matrix. We furthermore show that the above results are minimax optimal (within a universal constant) in classes of matrices with low-rank and bounded row and column sums. We also extend these results to handle the case of matrix multinomial denoising and completion.


Author(s):  
Caiyun Huang ◽  
Guojun Qin

This paper investigates how to perform robust and efficient unsupervised video segmentation while suppressing the effects of data noises and/or corruptions. The low-rank representation is pursued for video segmentation. The supervoxels affinity matrix of an observed video sequence is given, low-rank matrix optimization seeks a optimal solution by making the matrix rank explicitly determined. We iteratively optimize them with closed-form solutions. Moreover, we incorporate a discriminative replication prior into our framework based on the obervation that small-size video patterns, and it tends to recur frequently within the same object. The video can be segmented into several spatio-temporal regions by applying the Normalized-Cut algorithm with the solved low-rank representation. To process the streaming videos, we apply our algorithm sequentially over a batch of frames over time, in which we also develop several temporal consistent constraints improving the robustness. Extensive experiments are on the public benchmarks, they demonstrate superior performance of our framework over other approaches.


Sign in / Sign up

Export Citation Format

Share Document