gabor filter
Recently Published Documents


TOTAL DOCUMENTS

974
(FIVE YEARS 252)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Vol 164 ◽  
pp. 108224
Author(s):  
Yinan Miao ◽  
Jun Young Jeon ◽  
Yeseul Kong ◽  
Gyuhae Park

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Jian Qiao

In the past, the fans used to evaluate the strength of the team according to the victory and defeat ranking or according to their own intuition and preferences, however, the strength of the team is difficult to measure in analytical figures. The team’s winning rate is not the only factor to be considered to determine the strength of the team. There are many factors to be considered for determining the strength of the team. According to the variation coefficient of basketball scoring frequency, the paper designs the principal model of basketball players’ pitching target system. The data is captured by IoT devices and smart devices. The algorithm sets the number of the frequency of Gabor filter transformation features, controls the error accumulation, extracts the cascade features of basketball score video, constructs the video conversion discrimination rules, detects the basketball target, and obtains the tracking target contour to frame information. Finally, it realizes the target tracking detection of the team based on the team strength using an evaluation algorithm. The aim of this research work is to determine the strength of the team based on the healthcare data, team cohesiveness, and variance coefficient of basketball score frequency. The study on the coefficient of variation for basketball score frequency in teams can provide a theoretical research direction for team strength evaluation and meet the real-time needs of the coefficient of variation of basketball score frequency in teams. The empirical results show that the designed algorithm has the optimal execution time, more successful evaluation targets, high efficiency, and more reliability in evaluating the strength of the team.


Author(s):  
Mr. Mohammad Shabbir Sheikh

Abstract: Now a days, automobiles became most convenient mode of transportation for everyone. As we know one of the most important functions, TSDR has become a popular research . It primarily involves the use of vehicle cameras to collect real- time road pictures and then recognize and identify traffic signs seen on the road, therefore delivering correct data to the driving system. With the advancement of science and technology, an increasing number of scholars are turning to deep learning technology to save time in traditional processes. From the training samples, this model can learn the deep features inside the autonomously. The accuracy and great efficiency of detection and identification are the subject of this essay. A deep convolution neural network algorithm is proposed to train traffic sign training sets using Caffe[3], an open-source framework, in order to obtain a model that can classify traffic signs and learn and identify the most critical of these traffic sign features, in order to achieve the goal of identifying traffic signs in the real world. Keywords: Traffic sign, Segmentation, Gabor filter, Traffic Sign Detection and Recognition (TSDR)


2021 ◽  
Author(s):  
Hao Zhou ◽  
Yixin Chen ◽  
David Troendle ◽  
Byunghyun Jang

An automated and accurate fabric defect inspection system is in high demand as a replacement for slow, inconsistent, error-prone, and expensive human operators in the textile industry. Previous efforts focused on certain types of fabrics or defects, which is not an ideal solution. In this paper, we propose a novel one-class model that is capable of detecting various defects on different fabric types. Our model takes advantage of a well designed Gabor filter bank to analyze fabric texture. We then leverage an advanced deep learning algorithm, autoencoder, to learn general feature representations from the outputs of the Gabor filter bank. Lastly, we develop a nearest neighbor density estimator to locate potential defects and draw them on the fabric images. We demonstrate the effectiveness and robustness of the proposed model by testing it on various types of fabrics such as plain, patterned, and rotated fabrics. Our model also achieves a true positive rate (a.k.a recall) value of 0.895 with no false alarms on our dataset based upon the Standard Fabric Defect Glossary.


Author(s):  
Xiaodan Deng ◽  
Qian Yin ◽  
Ping Guo

AbstractThe success of deep learning in skin lesion classification mainly depends on the ultra-deep neural network and the significantly large training data set. Deep learning training is usually time-consuming, and large datasets with labels are hard to obtain, especially skin lesion images. Although pre-training and data augmentation can alleviate these issues, there are still some problems: (1) the data domain is not consistent, resulting in the slow convergence; and (2) low robustness to confusing skin lesions. To solve these problems, we propose an efficient structural pseudoinverse learning-based hierarchical representation learning method. Preliminary feature extraction, shallow network feature extraction and deep learning feature extraction are carried out respectively before the classification of skin lesion images. Gabor filter and pre-trained deep convolutional neural network are used for preliminary feature extraction. The structural pseudoinverse learning (S-PIL) algorithm is used to extract the shallow features. Then, S-PIL preliminarily identifies the skin lesion images that are difficult to be classified to form a new training set for deep learning feature extraction. Through the hierarchical representation learning, we analyze the features of skin lesion images layer by layer to improve the final classification. Our method not only avoid the slow convergence caused by inconsistency of data domain but also enhances the training of confusing examples. Without using additional data, our approach outperforms existing methods in the ISIC 2017 and ISIC 2018 datasets.


Author(s):  
Ankit Gupta ◽  
Priyaraj Priyaraj ◽  
Yashi Agarwal

This project constructs and assesses an image processing approach for lung cancer diagnosis in this study. Image processing techniques are frequently utilized for picture improvement in the detection phase to enable early medical therapy in a variety of medical issues. We suggested a lung cancer detection approach based on picture segmentation in this study. Image segmentation is a level of image processing that is intermediate. To segment a CT scan image, a marker control watershed and region growth technique is applied. Following the detection phases, picture augmentation with the Gabor filter, image segmentation, and feature extraction is performed. We discovered the efficiency of our strategy based on the experimental results. The results demonstrate that the watershed with the masking method, which has great accuracy and robustness, is the best strategy for detecting major features. Keywords: Lung cancer, MATLAB, CT images, Distortion removal, Segmentation, Mortality rate.


2021 ◽  
pp. 6787-6794
Author(s):  
Anisha Rebinth, Dr. S. Mohan Kumar

An automated Computer Aided Diagnosis (CAD) system for glaucoma diagnosis using fundus images is developed. The various glaucoma image classification schemes using the supervised and unsupervised learning approaches are reviewed. The research paper involves three stages of glaucoma disease diagnosis. First, the pre-processing stage the texture features of the fundus image is recorded with a two-dimensional Gabor filter at various sizes and orientations. The image features are generated using higher order statistical characteristics, and then Principal Component Analysis (PCA) is used to select and reduce the dimension of the image features. For the performance study, the Gabor filter based features are extracted from the RIM-ONE and HRF database images, and then Support Vector Machine (SVM) classifier is used for classification. Final stage utilizes the SVM classifier with the Radial Basis Function (RBF) kernel learning technique for the efficient classification of glaucoma disease with accuracy 90%.


Sign in / Sign up

Export Citation Format

Share Document