Thermodynamics of (Zn,Fe)S sphalerite. A CVM approach with large basis clusters

2000 ◽  
Vol 64 (5) ◽  
pp. 923-943 ◽  
Author(s):  
A. I. Balabin ◽  
R. O. Sack

AbstractWe have developed a cluster variation method (CVM) model based on cuboctahedral and octahedral basis clusters containing 13 and 6 atoms, respectively, and applied it to the analysis of the thermodynamic mixing properties of (Zn,Fe)S solid solutions. The model, in which the internal energy of the lattice is approximated by next to nearest neighbour (nnn) pair interactions and many-body interactions associated with nearest neighbour (nn) equilateral triangles, describes the FeS contents of sphalerites equilibrated with pyrrhotite and pyrite, and with pyrrhotite and iron metal within experimental uncertainties. The model predicts moderate deviations from ideality; the mean values of the Lewis and Randall activity coefficient of FeS and ZnS are, 1.48 and 1.03, respectively. Predictions of the model are in qualitative agreement with cell-edge data. The model also predicts that sphalerites undergo long-range ordering to lower-symmetry structures at temperatures only slightly below those investigated experimentally, a result in agreement with inferences from an existing Mössbauer investigation of synthetic sphalerites.More realistic models in which interactions are ascribed to larger species (nn triangular and centred square species) predict that such long-range ordering occurs at even higher temperatures and underscore the need for better characterization of the structures of (Zn,Fe)S minerals.

1990 ◽  
Vol 186 ◽  
Author(s):  
J. Mikalopas ◽  
P.E.A. Turchi ◽  
M. Sluiter ◽  
P.A. Sterne

AbstractThe phase stability of fcc-based Ni-V substitutional alloys is investigated using linear muffin-tin orbitals total energy (LMTO) calculations. The method of Connolly and Williams (CWM) is used to extract many body interactions from the ground state energies of selected ordered configurations. These interactions are used in conjunction with the cluster variation method (CVM) to calculate the alloy phase diagram. The dependence of the interactions on the choice of configurations used to calculate them is examined.


1990 ◽  
Vol 213 ◽  
Author(s):  
J. Mikalopas ◽  
P.A. Sterne ◽  
M. Sluiter ◽  
P.E.A. Turchi

ABSTRACTOne way to calculate the coherent phase diagram of an alloy based on first principles methods is to compute the ground state total energy for various ordered configurations, from which many-body interactions can be calculated and employed in a thermodynamic model. If the Connolly and Williams method (CWM) is used to extract the many-body interactions from the calculated total energies, the resulting many-body interactions can exhibit a strong dependence on the choice of ordered configurations and multi-site clusters, and the accuracy and convergence of the CWM energy expansion is not assured. To overcome this difficulty, a successful systematic method for implementing the CWM is proposed. This approach is applied to a study of the fcc-based Ni-V and Pd-V substitutional alloys and these interaction parameters together with the cluster variation method (CVM) are used to calculate phase diagrams.


1981 ◽  
Vol 34 (1) ◽  
pp. 61 ◽  
Author(s):  
Joan M Hanley ◽  
Thomas E Peacock

The Sanchez and de Fontaine formulation of the cluster variation method is used in a study of order-disorder phase transformations in a body centred cubic (b.c.c.) lattice. The method is modified to include second neighbour interactions in the configurational energy term. The dependence of the critical temperature on the ratio a of second neighbour to nearest neighbour interaction energy is studied. The method is also used to study. the dependence of the high temperature specific heat on a. It is found that the sign and magnitude of a have a marked effect on both of these properties.


1981 ◽  
Vol 34 (1) ◽  
pp. 75 ◽  
Author(s):  
Joan M Hanley ◽  
Thomas E Peacock

In Part I, the Sanchez and de Fontaine formulation of the cluster variation method was used to study the dependence of the critical temperature and the high temperature specific heat on the ratio of second neighbour to nearest neighbour interaction energy. This method can be extended to find solutions for the ordered state. The dependence of the low temperature specific heat on the interaction energy ratio is studied. As with the critical temperature and high T specific heat studies, it is found that both the sign and magnitude of ex affect the low temperature specific heat.


1983 ◽  
Vol 28 (5) ◽  
pp. 565-568 ◽  
Author(s):  
J S Desjardins ◽  
O Steinsvoll

Sign in / Sign up

Export Citation Format

Share Document