Long Range
Recently Published Documents





2022 ◽  
Vol 13 (1) ◽  
Shankar Pandey ◽  
Shankar Mandal ◽  
Mathias Bogetoft Danielsen ◽  
Asha Brown ◽  
Changpeng Hu ◽  

AbstractChiral communications exist in secondary structures of foldamers and copolymers via a network of noncovalent interactions within effective intermolecular force (IMF) range. It is not known whether long-range chiral communication exists between macromolecular tertiary structures such as peptide coiled-coils beyond the IMF distance. Harnessing the high sensitivity of single-molecule force spectroscopy, we investigate the chiral interaction between covalently linked DNA duplexes and peptide coiled-coils by evaluating the binding of a diastereomeric pair of three DNA-peptide conjugates. We find that right-handed DNA triple helices well accommodate peptide triple coiled-coils of the same handedness, but not with the left-handed coiled-coil stereoisomers. This chiral communication is effective in a range (<4.5 nm) far beyond canonical IMF distance. Small-angle X-ray scattering and molecular dynamics simulation indicate that the interdomain linkers are tightly packed via hydrophobic interactions, which likely sustains the chirality transmission between DNA and peptide domains. Our findings establish that long-range chiral transmission occurs in tertiary macromolecular domains, explaining the presence of homochiral pairing of superhelices in proteins.

2022 ◽  
Vol 13 (1) ◽  
Diyan Li ◽  
Chunyou Ning ◽  
Jiaman Zhang ◽  
Yujie Wang ◽  
Qianzi Tang ◽  

AbstractFolliculogenesis is a complex biological process involving a central oocyte and its surrounding somatic cells. Three-dimensional chromatin architecture is an important transcription regulator; however, little is known about its dynamics and role in transcriptional regulation of granulosa cells during chicken folliculogenesis. We investigate the transcriptomic dynamics of chicken granulosa cells over ten follicular stages and assess the chromatin architecture dynamics and how it influences gene expression in granulosa cells at three key stages: the prehierarchical small white follicles, the first largest preovulatory follicles, and the postovulatory follicles. Our results demonstrate the consistency between the global reprogramming of chromatin architecture and the transcriptomic divergence during folliculogenesis, providing ample evidence for compartmentalization rearrangement, variable organization of topologically associating domains, and rewiring of the long-range interaction between promoter and enhancers. These results provide key insights into avian reproductive biology and provide a foundational dataset for the future in-depth functional characterization of granulosa cells.

S. J. Syed Ali Fathima ◽  
T. Lalitha ◽  
Faiyaz Ahmad ◽  
S. Karthick

Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 41-64
Berit Schwichtenberg ◽  
Florian Fusseis ◽  
Ian B. Butler ◽  
Edward Andò

Abstract. Phyllosilicates are generally regarded to have a reinforcing effect on chemical compaction by dissolution–precipitation creep (DPC) and thereby influence the evolution of hydraulic rock properties relevant to groundwater resources and geological repositories as well as fossil fuel reservoirs. We conducted oedometric compaction experiments on layered NaCl–biotite samples to test this assumption. In particular, we aim to analyse slow chemical compaction processes in the presence of biotite on the grain scale and determine the effects of chemical and mechanical feedbacks. We used time-resolved (4-D) microtomographic data to capture the dynamic evolution of the porosity in layered NaCl–NaCl/biotite samples over 1619 and 1932 h of compaction. Percolation analysis in combination with advanced digital volume correlation techniques showed that biotite grains influence the dynamic evolution of porosity in the sample by promoting a reduction of porosity in their vicinity. However, the lack of preferential strain localisation around phyllosilicates and a homogeneous distribution of axial shortening across the sample suggests that the porosity reduction is not achieved by pore collapse but by the precipitation of NaCl sourced from outside the NaCl–biotite layer. Our observations invite a renewed discussion of the effect of phyllosilicates on DPC, with a particular emphasis on the length scales of the processes involved. We propose that, in our experiments, the diffusive transport processes invoked in classical theoretical models of DPC are complemented by chemo-mechanical feedbacks that arise on longer length scales. These feedbacks drive NaCl diffusion from the marginal pure NaCl layers into the central NaCl–biotite mixture over distances of several hundred micrometres and several grain diameters. Such a mechanism was first postulated by Merino et al. (1983).

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 474
Elio Hajj Assaf ◽  
Cornelius von von Einem ◽  
Cesar Cadena ◽  
Roland Siegwart ◽  
Florian Tschopp

Increasing demand for rail transportation results transportation by rail, resulting in denser and more high-speed usage of the existing railway network, making makes new and more advanced vehicle safety systems necessary. Furthermore, high traveling speeds and the greatlarge weights of trains lead to long braking distances—all of which necessitates Long braking distances, due to high travelling speeds and the massive weight of trains, necessitate a Long-Range Obstacle Detection (LROD) system, capable of detecting humans and other objects more than 1000 m in advance. According to current research, only a few sensor modalities are capable of reaching this far and recording sufficiently accurate enoughdata to distinguish individual objects. The limitation of these sensors, such as a 1D-Light Detection and Ranging (LiDAR), is however a very narrow Field of View (FoV), making it necessary to use ahigh-precision means of orienting to target them at possible areas of interest. To close this research gap, this paper presents a novel approach to detecting railway obstacles by developinga high-precision pointing mechanism, for the use in a future novel railway obstacle detection system In this work such a high-precision pointing mechanism is developed, capable of targeting aiming a 1D-LiDAR at humans or objects at the required distance. This approach addresses To address the challenges of a low target pricelimited budget, restricted access to high-precision machinery and equipment as well as unique requirements of our target application., a novel pointing mechanism has been designed and developed. By combining established elements from 3D printers and Computer Numerical Control (CNC) machines with a double-hinged lever system, simple and cheaplow-cost components are capable of precisely orienting an arbitrary sensor platform. The system’s actual pointing accuracy has been evaluated using a controlled, in-door, long-range experiment. The device was able to demonstrate a precision of 6.179 mdeg, which is at the limit of the measurable precision of the designed experiment.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 377
Frank Weinhold

Intermolecular bonding attraction at π-bonded centers is often described as “electrostatically driven” and given quasi-classical rationalization in terms of a “pi hole” depletion region in the electrostatic potential. However, we demonstrate here that such bonding attraction also occurs between closed-shell ions of like charge, thereby yielding locally stable complexes that sharply violate classical electrostatic expectations. Standard DFT and MP2 computational methods are employed to investigate complexation of simple pi-bonded diatomic anions (BO−, CN−) with simple atomic anions (H−, F−) or with one another. Such “anti-electrostatic” anion–anion attractions are shown to lead to robust metastable binding wells (ranging up to 20–30 kcal/mol at DFT level, or still deeper at dynamically correlated MP2 level) that are shielded by broad predissociation barriers (ranging up to 1.5 Å width) from long-range ionic dissociation. Like-charge attraction at pi-centers thereby provides additional evidence for the dominance of 3-center/4-electron (3c/4e) nD-π*AX interactions that are fully analogous to the nD-σ*AH interactions of H-bonding. Using standard keyword options of natural bond orbital (NBO) analysis, we demonstrate that both n-σ* (sigma hole) and n-π* (pi hole) interactions represent simple variants of the essential resonance-type donor-acceptor (Bürgi–Dunitz-type) attraction that apparently underlies all intermolecular association phenomena of chemical interest. We further demonstrate that “deletion” of such π*-based donor-acceptor interaction obliterates the characteristic Bürgi–Dunitz signatures of pi-hole interactions, thereby establishing the unique cause/effect relationship to short-range covalency (“charge transfer”) rather than envisioned Coulombic properties of unperturbed monomers.

2022 ◽  
Vol 72 (1) ◽  
pp. 114-121
Sudarsana Reddy Karnati ◽  
Lakshmi Boppanna ◽  
D. R. Jahagirdar

The on-board telemetry system of an aerospace vehicle sends the vehicle performance parameters to the ground receiving station at all instances of its trajectory. During the course of its trajectory, the communication channel of a long range vehicle, experiences various phenomena such as plume attenuation, stage separation, manoeuvring of a vehicle and RF blackout, causing loss of valuable telemetry data. The loss of communication link is inevitable due to these harsh conditions even when using the space diversity of ground receiving systems. Conventional telemetry systems do not provide redundant data for long range aerospace vehicles. This research work proposes an innovative delay data transmission, frame switchover and multiple frames data transmission schemes to improve the availability of telemetry data at ground receiving stations. The proposed innovative schemes are modelled using VHDL and extensive simulations have been performed to validate the results. The functionally simulated net list has been synthesised with 130 nm ACTEL flash based FPGA and verified on telemetry hardware.

Signals ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 1-10
Md. Noor-A-Rahim ◽  
M. Omar Khyam ◽  
Apel Mahmud ◽  
Xinde Li ◽  
Dirk Pesch ◽  

Long-range (LoRa) communication has attracted much attention recently due to its utility for many Internet of Things applications. However, one of the key problems of LoRa technology is that it is vulnerable to noise/interference due to the use of only up-chirp signals during modulation. In this paper, to solve this problem, unlike the conventional LoRa modulation scheme, we propose a modulation scheme for LoRa communication based on joint up- and down-chirps. A fast Fourier transform (FFT)-based demodulation scheme is devised to detect modulated symbols. To further improve the demodulation performance, a hybrid demodulation scheme, comprised of FFT- and correlation-based demodulation, is also proposed. The performance of the proposed scheme is evaluated through extensive simulation results. Compared to the conventional LoRa modulation scheme, we show that the proposed scheme exhibits over 3 dB performance gain at a bit error rate of 10−4.

2022 ◽  
Vol 72 (1) ◽  
pp. 122-132
Remadevi M. ◽  
N. Sureshkumar ◽  
R. Rajesh ◽  
T. Santhanakrishnan

Towed array sonars are preferred for detecting stealthy underwater targets that emit faint acoustic signals in the ocean, especially in shallow waters. However, the towing ship being near to the array behaves as a loud target, introducing additional interfering signals to the array, severely affecting the detection and classification of potential targets. Canceling this underlying interference signal is a challenging task and is investigated in this paper for a shallow ocean operational scenario where the problem is more critical due to the multipath phenomenon. A method exploiting the eigenvector analysis of spatio-temporal covariance matrix based on space time adaptive processing is proposed for suppressing tow ship interference and thus improving target detection. The developed algorithm learns the interference patterns in the presence of target signals to mitigate the interference across azimuth and to remove the spectral leakage of own-ship. The algorithm is statistically analyzed through a set of relevant metrics and is tested on simulated data that are equivalent to the data received by a towed linear array of acoustic sensors in a shallow ocean. The results indicate a reduction of 20-25dB in the tow ship interference power while the detection of long-range low SNR targets remain largely unaffected with minimal power-loss. In addition, it is demonstrated that the spectral leakage of tow ship, on multiple beams across the azimuth, due to multipath, is also alleviated leading to superior classification capabilities. The robustness of the proposed algorithm is validated by the open ocean experiment in the coastal shallow region of the Arabian Sea at Off-Kochi area of India, which produced results in close agreement with the simulations. A comparison of the simulation and experimental results with the existing PCI and ECA methods is also carried out, suggesting the proposed method is quite effective in suppressing the tow ship interference and is immensely beneficial for the detection and classification of long-range targets.

Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 168
Leiming Wu ◽  
Kai Che ◽  
Yuanjiang Xiang ◽  
Yuwen Qin

A guided−wave long−range surface plasmon resonance (GW−LRSPR) sensor was proposed in this investigation. In the proposed sensor, high−refractive−index (RI) dielectric films (i.e., CH3NH3PbBr3 perovskite, silicon) served as the guided−wave (GW) layer, which was combined with the long−range surface plasmon resonance (LRSPR) structure to form the GW−LRSPR sensing structure. The theoretical results based on the transfer matrix method (TMM) demonstrated that the LRSPR signal was enhanced by the additional high#x2212;RI GW layer, which was called the GW−LRSPR signal. The achieved GW−LRSPR signal had a strong ability to perceive the analyte. By optimizing the low− and high−RI dielectrics in the GW−LRSPR sensing structure, we obtained the highest sensitivity (S) of 1340.4 RIU−1 based on a CH3NH3PbBr3 GW layer, and the corresponding figure of merit (FOM) was 8.16 × 104 RIU−1 deg−1. Compared with the conventional LRSPR sensor (S = 688.9 RIU−1), the sensitivity of this new type of sensor was improved by nearly 94%.

Sign in / Sign up

Export Citation Format

Share Document