scholarly journals The deletion in both common types of hereditary persistence of fetal hemoglobin is approximately 105 kilobases

Blood ◽  
1987 ◽  
Vol 70 (6) ◽  
pp. 1797-1803
Author(s):  
FS Collins ◽  
JL Cole ◽  
WK Lockwood ◽  
MC Iannuzzi

The most common forms of hereditary persistence of fetal hemoglobin (HPFH) involve large deletions that remove the adult delta and beta genes but leave the paired fetal genes (G gamma and A gamma) intact. The size of these deletions has previously eluded exact definition. Using pulsed-field gel electrophoresis and the enzyme SfiI, which cuts only rarely in genomic DNA, we have constructed a large-scale restriction map of the beta-globin cluster in normal and HPFH DNA. The deletions in HPFH-1, which occurs in American blacks, and in HPFH-2, which occurs in Ghanaian blacks, are found to be approximately 105 kilobases (kb) in length, though the endpoints are staggered by approximately 5 kb. The fact that two previously reported gamma delta beta-thalassemia deletions to the 5′ side of the beta-globin cluster are also about 100 kb suggests a common mechanism, possibly involving the loss of a complete chromatin loop.

Blood ◽  
1987 ◽  
Vol 70 (6) ◽  
pp. 1797-1803 ◽  
Author(s):  
FS Collins ◽  
JL Cole ◽  
WK Lockwood ◽  
MC Iannuzzi

Abstract The most common forms of hereditary persistence of fetal hemoglobin (HPFH) involve large deletions that remove the adult delta and beta genes but leave the paired fetal genes (G gamma and A gamma) intact. The size of these deletions has previously eluded exact definition. Using pulsed-field gel electrophoresis and the enzyme SfiI, which cuts only rarely in genomic DNA, we have constructed a large-scale restriction map of the beta-globin cluster in normal and HPFH DNA. The deletions in HPFH-1, which occurs in American blacks, and in HPFH-2, which occurs in Ghanaian blacks, are found to be approximately 105 kilobases (kb) in length, though the endpoints are staggered by approximately 5 kb. The fact that two previously reported gamma delta beta-thalassemia deletions to the 5′ side of the beta-globin cluster are also about 100 kb suggests a common mechanism, possibly involving the loss of a complete chromatin loop.


Blood ◽  
1994 ◽  
Vol 83 (6) ◽  
pp. 1673-1682 ◽  
Author(s):  
JE Craig ◽  
RA Barnetson ◽  
J Prior ◽  
JL Raven ◽  
SL Thein

Abstract A considerable number of deletions of variable size and position that involve the beta-globin gene complex on chromosome 11 are associated with the clinical entities of hereditary persistence of fetal hemoglobin (HPFH) and delta beta thalassemia. Specific deletions appear to be associated with consistent phenotypes and some are known to be recurrent. To facilitate the molecular diagnosis of uncharacterized patients with HPFH and delta beta thalassemia, oligonucleotide primers have been designed to enzymatically amplify deletion-specific products for nine known deletions, which include those responsible for HPFH-1, HPFH-2, HPFH-3, Spanish (delta beta)zero thalassemia, hemoglobin (Hb) Lepore, Sicilian (delta beta)zero thalassemia, Chinese G gamma(A gamma delta beta)zero thalassemia, Asian-Indian inversion-deletion G gamma(A gamma delta beta)zero thalassemia, and Turkish inversion-deletion (delta beta)zero thalassemia. Using this approach, we have successfully characterized the molecular basis for delta beta thalassemia in 23 individuals from 16 families of diverse ethnic origins. Thirteen individuals from this group were shown to be heterozygous for the 13.4- kb Sicilian deletion, two were heterozygous for the 100-kb Chinese G gamma(A gamma delta beta)zero deletion, four were heterozygous for the Turkish form of inversion-deletion delta beta thalassemia, and three were heterozygous for the Asian-Indian form of inversion-deletion G gamma(A gamma delta beta)zero thalassemia. One Vietnamese subject was heterozygous for a 12.6-kb deletion, which we have fully characterized at the molecular level. Sequence analysis of the breakpoint regions of the Chinese deletion and the Turkish rearrangement indicates that, in each case, the mutation is likely to have arisen from a single origin. This hypothesis is supported by the evident geographical clustering of the various deletions described here.


Blood ◽  
1994 ◽  
Vol 83 (6) ◽  
pp. 1673-1682
Author(s):  
JE Craig ◽  
RA Barnetson ◽  
J Prior ◽  
JL Raven ◽  
SL Thein

A considerable number of deletions of variable size and position that involve the beta-globin gene complex on chromosome 11 are associated with the clinical entities of hereditary persistence of fetal hemoglobin (HPFH) and delta beta thalassemia. Specific deletions appear to be associated with consistent phenotypes and some are known to be recurrent. To facilitate the molecular diagnosis of uncharacterized patients with HPFH and delta beta thalassemia, oligonucleotide primers have been designed to enzymatically amplify deletion-specific products for nine known deletions, which include those responsible for HPFH-1, HPFH-2, HPFH-3, Spanish (delta beta)zero thalassemia, hemoglobin (Hb) Lepore, Sicilian (delta beta)zero thalassemia, Chinese G gamma(A gamma delta beta)zero thalassemia, Asian-Indian inversion-deletion G gamma(A gamma delta beta)zero thalassemia, and Turkish inversion-deletion (delta beta)zero thalassemia. Using this approach, we have successfully characterized the molecular basis for delta beta thalassemia in 23 individuals from 16 families of diverse ethnic origins. Thirteen individuals from this group were shown to be heterozygous for the 13.4- kb Sicilian deletion, two were heterozygous for the 100-kb Chinese G gamma(A gamma delta beta)zero deletion, four were heterozygous for the Turkish form of inversion-deletion delta beta thalassemia, and three were heterozygous for the Asian-Indian form of inversion-deletion G gamma(A gamma delta beta)zero thalassemia. One Vietnamese subject was heterozygous for a 12.6-kb deletion, which we have fully characterized at the molecular level. Sequence analysis of the breakpoint regions of the Chinese deletion and the Turkish rearrangement indicates that, in each case, the mutation is likely to have arisen from a single origin. This hypothesis is supported by the evident geographical clustering of the various deletions described here.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1771-1776
Author(s):  
S Shiokawa ◽  
H Yamada ◽  
Y Takihara ◽  
E Matsunaga ◽  
Y Ohba ◽  
...  

A DNA fragment containing the deletion junction region from a Japanese individual with homozygous delta beta-thalassemia has been cloned. A clone containing the normal DNA surrounding the 3′ breakpoint of this deletion and a clone carrying the G gamma- and A gamma-globin genes of this patient were also isolated. Sequences of the deletion junction and both gamma-globin genes were determined. A comparison of these sequences with previously determined sequences of the normal counterparts revealed that the 5′ breakpoint is located between 2,134 and 2,137 base pairs (bp) 3′ to the polyA site of the A gamma-globin gene, the 5′ breakpoint is located just downstream of the 3′ border of the fetal gamma-globin duplication unit, and no molecular defects are evident within the gamma-globin gene region. A comparison between the sequences of the normal DNA surrounding the 3′ breakpoint and the normal DNA surrounding the 5′ breakpoint shows that deletion is the result of a nonhomologous recombination event. There are A+T-rich stretches near the 5′ and 3′ breakpoints in the normal DNA, and a portion of an Aly repeat is located in the region 3′ to the 3′ breakpoint. Southern blot analysis using probes 3′ to the beta-globin gene showed that the deletion extends in the 3′ direction further than any other deletions associated with delta beta-thalassemia and hereditary persistence of fetal hemoglobin (HPFH) heretofore reported. These results are discussed in terms of the mechanism generating large deletions in mammalian cells and three models for the regulation of gamma-globin and beta-globin gene expression in humans.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1771-1776 ◽  
Author(s):  
S Shiokawa ◽  
H Yamada ◽  
Y Takihara ◽  
E Matsunaga ◽  
Y Ohba ◽  
...  

Abstract A DNA fragment containing the deletion junction region from a Japanese individual with homozygous delta beta-thalassemia has been cloned. A clone containing the normal DNA surrounding the 3′ breakpoint of this deletion and a clone carrying the G gamma- and A gamma-globin genes of this patient were also isolated. Sequences of the deletion junction and both gamma-globin genes were determined. A comparison of these sequences with previously determined sequences of the normal counterparts revealed that the 5′ breakpoint is located between 2,134 and 2,137 base pairs (bp) 3′ to the polyA site of the A gamma-globin gene, the 5′ breakpoint is located just downstream of the 3′ border of the fetal gamma-globin duplication unit, and no molecular defects are evident within the gamma-globin gene region. A comparison between the sequences of the normal DNA surrounding the 3′ breakpoint and the normal DNA surrounding the 5′ breakpoint shows that deletion is the result of a nonhomologous recombination event. There are A+T-rich stretches near the 5′ and 3′ breakpoints in the normal DNA, and a portion of an Aly repeat is located in the region 3′ to the 3′ breakpoint. Southern blot analysis using probes 3′ to the beta-globin gene showed that the deletion extends in the 3′ direction further than any other deletions associated with delta beta-thalassemia and hereditary persistence of fetal hemoglobin (HPFH) heretofore reported. These results are discussed in terms of the mechanism generating large deletions in mammalian cells and three models for the regulation of gamma-globin and beta-globin gene expression in humans.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 828-831
Author(s):  
JF Balsley ◽  
E Rappaport ◽  
E Schwartz ◽  
S Surrey

We report restriction endonuclease analysis of the gamma-delta-beta- globin gene region in a mother and child heterozygous for G gamma-beta +-hereditary persistence of fetal hemoglobin (HPFH). The affected chromosome in these persons directs the production of G gamma-chains and beta-chains but not A gamma-chains. DNA was digested with several restriction enzymes and was examined for gamma, delta, beta sequences by blot hybridization. Only normal digestion fragments were present. By sensitive methods, we were unable to detect a deletion in the entire gamma-delta-beta-globin gene region of the affected chromosome, indicating that in this family, G gamma-beta +-HPFH is not due to a large deletion.


Blood ◽  
1986 ◽  
Vol 68 (4) ◽  
pp. 971-974
Author(s):  
GD Efremov ◽  
N Nikolov ◽  
Y Hattori ◽  
I Bakioglu ◽  
TH Huisman

Restriction endonuclease mapping analyses were made of DNA from a few members of a Macedonian family with hematological characteristics of delta beta-thalassemia, ie, microcytosis, normal HbA2 levels, and elevated levels of HbF (7% to 14%) with G gamma (average 40.5%) and A gamma T chains (average 59.5%). A large deletion of 18 to 23 kb was present with a 5′ breakpoint within a 670-bp segment of DNA between the HpaI and NcoI restriction sites 5′ to the delta globin gene, and a 3′ breakpoint between the BamHI and HpaI restriction sites located some 9 to 13 kb 3′ to the beta globin gene. This deletion is different from those present in other types of G gamma A gamma(delta beta)zero- thalassemia. The similarity of the hematological expression of these delta beta-thalassemic conditions which have somewhat comparable 5′ breakpoints supports the idea that an important fetal hemoglobin- controlling region lies between the psi beta and delta globin genes.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3374-3374
Author(s):  
Molly Susan Hein ◽  
Jennifer L Oliveira ◽  
Kenneth C Swanson ◽  
Patrick A Lundquist ◽  
Joella A Yungerberg ◽  
...  

Abstract Background: Large deletions involving the beta globin complex are relatively rare. They can be categorized generally into five groups by deletion size and/or location: 1) beta zero thalassemia (BZT); 2) delta beta thalassemia (DBT); 3) hereditary persistence of fetal hemoglobin (HPFH); 4) gamma delta beta thalassemia (GDBT); and 5) epsilon gamma delta beta thalassemia (EGDBT). These deletions are not well understood but often have significant clinical impact, either when present alone or in combination with other hemoglobin mutations. In this study, we analyze phenotypic and molecular data on a large number of cases with deletions in the beta globin gene complex to better classify these five groups of deletions as they occur in isolation. Methods: A query of the routine clinical testing patient files from the Mayo Clinic Metabolic Hematology and Molecular Genetics Laboratories from 2010 to 2015 identified 179 patients with a deletion confirmed by a Multiplex Ligation-dependent Probe Amplification (MLPA) assay. Twenty-four probes sets were placed from the 5' locus control region (LCR) to the 3' hypersensitivity region, spanning the beta globin gene complex. Using a Luminex LX200 flow cytometer, a gene dosage ratio was calculated for each probe set using the median fluorescent intensity value collected. The size and location of the deletion and patient phenotype were compared. Results: Of the 179 total cases, the following large deletions were identified: beta gene (HBB) (n = 47), delta (HBD) through HBB (n = 105), A-gamma (HBG2) through HBB (n = 20), and locus control region (LCR) through HBB (n = 7). One case had a deletion involving the LCR epsilon with the rest of the complex left intact. A subset (n = 60) of cases had compound hemoglobin mutations that altered the phenotype. The BZT cases had relatively high Hb A2 levels and variable Hb F levels consistent with promotor region loss. The main differences between DBT and HPFH included Hb F and Hb A2 levels. GDBT cases presented with median Hb F levels higher than that observed in DBTs, normal Hb A2, and microcytic anemia. EGDBT cases had variable features according to age of the patient and Hb F level; severe microcytic anemia was observed in neonates, milder microcytic anemia in young children, and microcytosis without anemia in an adult case. The phenotypic features of 119 patients with isolated large deletions are compiled in table 1. Conclusion: In general, all five categories of large deletions in an isolated heterozygous state can present with microcytic anemia and are typically benign with the exception of transient severe microcytic anemia in neonatal EGDBT cases. Although phenotypes associated with large deletions involving the beta globin gene complex are frequently distinctive, significant phenotypic overlap can be seen in a subset of cases. These cases require molecular analysis due to their clinical importance when in combination with another beta globin gene complex mutation for an adequate diagnosis and treatment approach. Table 1. Deletion type Age n HbF (%) HbA2 (%) Hb (g/dL) MCV (fL) RBC (10^12/L) RDW (%) MCH (pg/cell) BZT 20 6.3 (0.6-94.4) 6.8 (3.4-11.6) 11.1 (8.3-14.5) 65.4 (60.8-77.2) 5.4 (4.2-6.2) 19.2 (16.6-21.2) 20.9 (18.3-25.7) DBT 56 10.6 (2.7-22.4) 2.7 (2.5-3.1) 11.7 (8.6-14.4) 68.9 (61.3-83.5) 5.3 (4.1-7.3) 21.4 (18.2-26.8) 21.6 (19.9-39.2) HPFH 23 25.9 (17.6-39.7) 2.0 (1.5-2.4) 11.6 (8.1-16.7) 78.4 (60.2-101.9) 4.4 (3.0-6.3) 17.5 (14.1-22.3) 25.4 (17.6-29.7) GDBT 14 13.3 (8.2-19.0) 2.6 (1.8-2.7) 11.0 (8.6-14.1) 72.5 (57.9-82.1) 5.1 (3.5-6.2) 20.6 (17.4-23.5) 22 (17.9-25.1) EGDBT* 28 Y 1 0.3 3 13.3 59.4 6.9 15.4 19.2 1-4 Y 3 0.9 (0-1.6) 3.2 (2.9-3.5) 9.5 (8.8-13.3) 57.8 (57.6-59.4) 5.2 (4.9-6.9) 16.6 (15.4-17.4) 18.5 (18.1-19.2) <6 month 2 21.4 (14.8-27.9) 2.6 (2.2-2.9) 6.3 (6.0-6.6) 61.3 (59.9-62.6) 3.4 (3.3-3.3) 21.5 (21.2-21.7) 18.4 (18.1-18.7) medians, (min, max); *stratified by age Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 77 (4) ◽  
pp. 861-867
Author(s):  
M Losekoot ◽  
R Fodde ◽  
EJ Gerritsen ◽  
I van de Kuit ◽  
A Schreuder ◽  
...  

We report two different disorders of the beta-globin gene cluster segregating in a Belgian family: a novel deletion that results in (G) gamma + ((A) gamma delta beta)(0)-thalassemia (thal) and a heterocellular hereditary persistence of foetal hemoglobin of the Swiss type linked to a delta(0)-thal gene (delta (0)-HPFH). Heterozygosity for the heterocellular HPFH brings about a moderate (3.4% to 8.24%) increase of hemoglobin (Hb) F having a G gamma/A gamma ratio of 4:1, whereas carriers of the G gamma + ((A) gamma delta beta)(0)-thal deletion show in their peripheral blood a considerably higher (15%) percentage of Hb F. Both defects interact in the compound heterozygotes for G gamma + ((A) gamma delta beta)(0)-thal and delta(0)-HPFH producing a further increase (up to 24%) of fetal Hb consisting entirely of G gamma chains. Molecular characterization of the (G) gamma + ((A) gamma delta beta)(0)-thal by means of Southern analysis showed that the deletion spans about 50 kb, removing the 3′ end of the A gamma- gene, the psi beta-, delta-, and beta-genes. A number of possible mechanisms leading to the overproduction of Hb F in HPFH and (G) gamma + ((A) gamma delta beta)(0)-thal will be discussed.


Blood ◽  
1986 ◽  
Vol 68 (4) ◽  
pp. 971-974 ◽  
Author(s):  
GD Efremov ◽  
N Nikolov ◽  
Y Hattori ◽  
I Bakioglu ◽  
TH Huisman

Abstract Restriction endonuclease mapping analyses were made of DNA from a few members of a Macedonian family with hematological characteristics of delta beta-thalassemia, ie, microcytosis, normal HbA2 levels, and elevated levels of HbF (7% to 14%) with G gamma (average 40.5%) and A gamma T chains (average 59.5%). A large deletion of 18 to 23 kb was present with a 5′ breakpoint within a 670-bp segment of DNA between the HpaI and NcoI restriction sites 5′ to the delta globin gene, and a 3′ breakpoint between the BamHI and HpaI restriction sites located some 9 to 13 kb 3′ to the beta globin gene. This deletion is different from those present in other types of G gamma A gamma(delta beta)zero- thalassemia. The similarity of the hematological expression of these delta beta-thalassemic conditions which have somewhat comparable 5′ breakpoints supports the idea that an important fetal hemoglobin- controlling region lies between the psi beta and delta globin genes.


Sign in / Sign up

Export Citation Format

Share Document