restriction enzymes
Recently Published Documents


TOTAL DOCUMENTS

1286
(FIVE YEARS 168)

H-INDEX

76
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Kathleen A Christie ◽  
Jimmy A Guo ◽  
Rachel A Silverstein ◽  
Roman M Doll ◽  
Megumu Mabuchi ◽  
...  

While restriction enzymes (REs) remain the gold-standard for manipulating DNA in vitro, they have notable drawbacks including a dependence on short binding motifs that constrain their ability to cleave DNA substrates. Here we overcome limitations of REs by developing an optimized molecular workflow that leverages the PAMless nature of a CRISPR-Cas enzyme named SpRY to cleave DNA at practically any sequence. Using SpRY for DNA digests (SpRYgests), we establish a method that permits the efficient cleavage of DNA substrates at any base pair. We demonstrate the effectiveness of SpRYgests using more than 130 gRNAs, illustrating the versatility of this approach to improve the precision of and simplify several cloning workflows, including those not possible with REs. We also optimize a rapid and simple one-pot gRNA synthesis protocol, which reduces cost and makes the overall SpRYgest workflow comparable to that of RE digests. Together, SpRYgests are straightforward to implement and can be utilized to improve a variety of DNA engineering applications.


2022 ◽  
Author(s):  
Behnam Enghiad ◽  
Pu Xue ◽  
Nilmani Singh ◽  
Aashutosh Girish Boob ◽  
Chengyou Shi ◽  
...  

Plasmids are used extensively in basic and applied biology. However, design and construction of plasmids, specifically the ones carrying complex genetic information, remains one of the most time-consuming, labor-intensive, and rate-limiting steps in performing sophisticated biological experiments. Here, we report the development of a versatile, robust, automated end-to-end platform named PlasmidMaker that allows error-free construction of plasmids with virtually any sequences in a high-throughput manner. This platform consists of a most versatile DNA assembly method using Pyrococcus furiosus Argonaute (PfAgo)-based artificial restriction enzymes, a user-friendly frontend for plasmid design, and a backend that streamlines the workflow and integration with a robotic system. As a proof of concept, we used this platform to generate 101 plasmids from six different species ranging from 5 to 18 kb in size from up to 11 DNA fragments within 3 days. PlasmidMaker should greatly expand the potential of synthetic biology.


2022 ◽  
Vol 82 ◽  
Author(s):  
I. Ullah ◽  
S. G. Afridi ◽  
A. U. Khan ◽  
M. Israr ◽  
A. Ali ◽  
...  

Abstract Plasmodium vivax is the most common human malaria parasite in Asian countries including Pakistan. Present study was designed to explore the genetic diversity of plasmodium vivax genotypes based on Pvmsp-3α and Pvmsp-3βgenes using allelic specific nested PCR and RFLP assays markers from field isolates in district Mardan, Pakistan. Blood samples of 200 P. vivax malarial patients were collected after taking their written informed consent. Genetic diversity in nested PCR products was determined by Restriction Fragment Length Polymorphism (RFLP) utilizing Alu1 and PstI restriction enzymes for alpha and beta gene products digestion, respectively. For analysis the genetic diversity of the sub allelic variants of Pvmsp3α and Pvmsp3β genes, Chi-Square test was performed by utilizing Minitab programming software 18. The P value 0.05 was considered as statistically significant. For Pvmsp-3α genes after gel electrophoresis of digested products, four distinct genotypes were obtained from total of 50 samples; type A: 35 (70%) (1.5-2.0 kb), 12 of type B (24%) (1.5-1.7 kb), 2 of type C (4%) (0.5-1.5) and one for type D (2%) (0.5-0.65 kb) which could be characterized into 9 allelic pattern (A1-A4, B1-B3, C1, D), in which A3 remained the most predominant. For Pvmsp-3βgenes, three distinct genotypes were obtained from 50 samples; 40(80%) of type A (1.5-2.5 kb), 9 (18%) of type B (1.0-1.5kb) and 1(2%) of type C (0.65 kb) which could be characterized into 6 allelic patterns (A1-A3, B1-B2, and C1). Most dominant one in Type A was A1 alleles which were noted (46%), while in Type B, the most dominant were B1 (10%).This study is the first ever report of molecular epidemiology and genetic variation in Pvmsp-3α and Pvmsp-3β genes of P. vivax isolates by using PCR/RFLP from District Mardan and showed a remarkable level of genetic diversity in the studied genes of circulating parasites in the study area. The results of this study will contribute in future studies about the genetic structure of parasite and vaccine development against the malaria.


Author(s):  
Habtamu Ayalew ◽  
Joshua D Anderson ◽  
Nick Krom ◽  
Yuhong Tang ◽  
Twain J Butler ◽  
...  

Abstract Triticale, a hybrid species between wheat and rye, is one of the newest additions to the plant kingdom with a very short history of improvement. It has very limited genomic resources because of its large and complex genome. Objectives of this study were to generate dense marker data, understand genetic diversity, population structure, linkage disequilibrium (LD), and estimate accuracies of commonly used genomic selection (GS) models on forage yield of triticale. Genotyping-by-sequencing (GBS), using PstI and MspI restriction enzymes for reducing genome complexity, was performed on a triticale diversity panel (n = 289). After filtering for biallelic loci with more than 70% genome coverage, and minor allele frequency (MAF) > 0.05, de novo variant calling identified 16,378 single nucleotide polymorphism (SNP) markers. Sequences of these variants were mapped to wheat and rye reference genomes to infer their homologous groups and chromosome positions. About 45% (7,430), and 58% (9,500) of the de novo identified SNPs were mapped to the wheat and rye reference genomes, respectively. Interestingly, 28.9% (2,151) of the 7,430 SNPs were mapped to the D genome of hexaploid wheat, indicating substantial substitution of the R genome with D genome in cultivated triticale. About 27% of marker pairs were in significant LD with an average r2 > 0.18 (P < 0.05). Genome-wide LD declined rapidly to r2 < 0.1 beyond 10 kb physical distance. The three sub-genomes (A, B, and R) showed comparable LD decay patterns. Genetic diversity and population structure analyses identified five distinct clusters. Genotype grouping did not follow prior winter vs. spring type classification. However, one of the clusters was largely dominated by winter triticale. Genomic selection accuracies were estimated for forage yield using three commonly used models with different training population sizes and marker densities. Genomic selection accuracy increased with increasing training population size while gain in accuracy tended to plateau with marker densities of 2,000 SNPs or more. Average GS accuracy was about 0.52, indicating the potential of using GS in triticale forage yield improvement.


2021 ◽  
Vol 9 (12) ◽  
pp. 2505
Author(s):  
Hiroki Hayashi ◽  
Tsutomu Kishi

Epitope tagging is a powerful strategy for analyzing the functions of targeted proteins. The use of this strategy has become more convenient with the development of the epitope switch, which is another type of epitope tagging designed to convert the previously tagged epitopes on the chromosome to other epitopes of interest. Various modules for C-terminal epitope switching have been developed and amplified using the one-step polymerase chain reaction (PCR) method before transformation. However, PCR amplification occasionally generates mutations that affect the fidelity of epitope switching. Here, we constructed several plasmids to isolate modules for epitope switching through digestion by restriction enzymes. The isolated modules contained DNA sequences for homologous recombination, various epitopes (13×Myc, 6×HA, GFP, Venus, YFP, mCherry, and CFP), and a transformation marker (Candida glabrata LEU2). The restriction enzyme-digested plasmids were used to directly transform the cells for epitope switching. We demonstrate the efficient and accurate switching of the MX6 module-based C-terminal tandem affinity purification tags to each aforementioned epitope. We believe that our plasmids can serve as powerful tools for the functional analysis of yeast proteins.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Mohammad Bagher Hashemi-Soteh ◽  
Elaheh Hosseini ◽  
Shokoufeh Fazelnia ◽  
Faramarz Ghasemian-Sorbeni ◽  
Sara Madahian ◽  
...  

Background. The human CYP2B subfamily consists of one functional gene (CYP2B6) and one pseudogene (CYP2B7P). Cytochrome P450 2B6 (CYP2B6) is a highly polymorphic enzyme that shows marked interindividual and interethnic variations. Currently, 38 alleles have been described, and some of the allelic variants have been associated with low enzyme activity. The aim of this study was to investigate the frequencies of CYP2B6∗4, CYP2B6∗5, and CYP2B6∗6 alleles in the Mazani ethnic group among Iranian Population. Methods. The study was conducted in 289 unrelated healthy volunteers. DNA was extracted from peripheral blood and analyzed by the PCR-RFLP protocol. The PCR product was digested with restriction enzymes and then separated using agarose gel electrophoresis. Results. The frequency of CYP2B6∗4, CYP2B6∗5, and CYP2B6∗6 in this study was 34.60%, 7.26%, and 34.54%, respectively. Conclusion. The frequency of the CYP2B6∗4 allele in the Mazani ethnic group was much higher (34.60%) than other population. The frequency of CYP2B6∗6 (34.54%) also was higher than its frequency in other previously reported population. But the frequency of CYP2B6∗5 in this study was lower than expected. These results will be useful in understanding the ethnic diversity in Iranian population and offer a preliminary basis for more rational use of drugs that are substrates for CYP2B6 in this population.


2021 ◽  
Author(s):  
Van Hovenga ◽  
Oluwatosin Oluwadare ◽  
Jugal Kalita

Chromosome conformation capture (3C) is a method of measuring chromosome topology in terms of loci interaction. The Hi-C method is a derivative of 3C that allows for genome wide quantification of chromosome interaction. From such interaction data, it is possible to infer the three-dimensional (3D) structure of the underlying chromosome. In this paper, we use a node embedding algorithm and a graph neural network to predict the 3D coordinates of each genomic loci from the corresponding Hi-C contact data. Unlike other chromosome structure prediction methods, our method can generalize a single model across Hi-C resolutions, multiple restriction enzymes, and multiple cell populations while maintaining reconstruction accuracy. We derive these results using three separate Hi-C data sets from the GM12878, GM06990, and K562 cell lines. We also compare the reconstruction accuracy of our method to four other existing methods and show that our method yields superior performance. Our algorithm outperforms the state-of-the-art methods in the accuracy of prediction and introduces a novel method for 3D structure prediction from Hi-C data.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 847
Author(s):  
Milica Nikolić ◽  
Iva Savić ◽  
Ana Nikolić ◽  
Marko Jauković ◽  
Vesna Kandić ◽  
...  

In Serbia, aspergillus ear rot caused by the disease pathogen Aspergillus parasiticus (A. parasiticus) was first detected in 2012 under both field and storage conditions. Global climate shifts, primarily warming, favour the contamination of maize with aflatoxins in temperate climates, including Serbia. A five-year study (2012–2016) comprising of 46 A. parasiticus strains isolated from maize kernels was performed to observe the morphological, molecular, pathogenic, and toxigenic traits of this pathogen. The HPLC method was applied to evaluate mycotoxin concentrations in this causal agent. The A. parasiticus isolates synthesised mainly aflatoxin AFB1 (84.78%). The percentage of isolates synthesising aflatoxin AFG1 (15.22%) was considerably lower. Furthermore, the concentration of AFG1 was higher than that of AFB1 in eight isolates. The polyphase approach, used to characterise isolates, showed that they were A. parasiticus species. This identification was verified by the multiplex RLFP-PCR detection method with the use of restriction enzymes. These results form an excellent baseline for further studies with the aim of application in the production, processing, and storage of cereal grains and seeds, and in technological processes to ensure the safe production of food and feed.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2542
Author(s):  
Won-Nyeong Kim ◽  
Hye-Jeong Kim ◽  
Young-Soo Chung ◽  
Hyun-Uk Kim

CRISPR/Cas9 is a commonly used technique in reverse-genetics research to knock out a gene of interest. However, when targeting a multigene family or multiple genes, it is necessary to construct a vector with multiple single guide RNAs (sgRNAs) that can navigate the Cas9 protein to the target site. In this protocol, the Golden Gate cloning method was used to generate multiple sgRNAs in the Cas9 vector. The vectors used were pHEE401E_UBQ_Bar and pBAtC_tRNA, which employ a one-promoter/one-sgRNA and a polycistronic-tRNA-gRNA strategy, respectively. Golden Gate cloning was performed with type IIS restriction enzymes to generate gRNA polymers for vector inserts. Four sgRNAs containing the pHEE401E_UBQ_Bar vector and four to six sgRNAs containing the pBAtC_tRNA vector were constructed. In practice, we constructed multiple sgRNAs targeting multiple genes of FAD2 and FATB in soybean using this protocol. These three vectors were transformed into soybeans using the Agrobacterium-mediated method. Using deep sequencing, we confirmed that the T0 generation transgenic soybean was edited at various indel ratios in the predicted target regions of the FAD2 and FATB multigenes. This protocol is a specific guide that allows researchers to easily follow the cloning of multiple sgRNAs into commonly used CRISPR/Cas9 vectors for plants.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1838
Author(s):  
Shiv Shankhar Kaundun ◽  
Joe Downes ◽  
Lucy Victoria Jackson ◽  
Sarah-Jane Hutchings ◽  
Eddie Mcindoe

Herbicides that inhibit acetyl-CoA carboxylase (ACCase) are among the few remaining options for the post-emergence control of Lolium species in small grain cereal crops. Here, we determined the mechanism of resistance to ACCase herbicides in a Lolium multiflorum population (HGR) from France. A combined biological and molecular approach detected a novel W2027L ACCase mutation that affects aryloxyphenoxypropionate (FOP) but not cyclohexanedione (DIM) or phenylpyraxoline (DEN) subclasses of ACCase herbicides. Both the wild-type tryptophan and mutant leucine 2027-ACCase alleles could be positively detected in a single DNA-based-derived polymorphic amplified cleaved sequence (dPACS) assay that contained the targeted PCR product and a cocktail of two discriminating restriction enzymes. Additionally, we identified three well-characterised I1781L, I2041T, and D2078G ACCase target site resistance mutations as well as non-target site resistance in HGR. The non-target site component endowed high levels of resistance to FOP herbicides whilst partially impacting on the efficacy of pinoxaden and cycloxydim. This study adequately assessed the contribution of the W2027L mutation and non-target site mechanism in conferring resistance to ACCase herbicides in HGR. It also highlights the versatility and robustness of the dPACS method to simultaneously identify different resistance-causing alleles at a single ACCase codon.


Sign in / Sign up

Export Citation Format

Share Document