scholarly journals Recombinant granulocyte colony-stimulating factor administration to healthy volunteers: induction of immunophenotypically and functionally altered neutrophils via an effect on myeloid progenitor cells

Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3265-3272 ◽  
Author(s):  
JM Kerst ◽  
M de Haas ◽  
CE van der Schoot ◽  
IC Slaper-Cortenbach ◽  
M Kleijer ◽  
...  

Abstract We performed a detailed kinetic study on the in vivo effect of a single subcutaneous dose of granulocyte colony-stimulating factor (G-CSF; 300 micrograms) in four healthy individuals on the expression and function of neutrophil Fc gamma receptors (Fc gamma R). G-CSF did not induce Fc gamma RI (CD64) on circulating neutrophils. However, neutrophils newly formed in response to G-CSF were Fc gamma RI positive and were able to perform antibody-dependent cellular cytotoxicity in an Fc gamma RI- dependent way. Fc gamma RII (CD32) expression was not changed significantly. Fc gamma RIII (CD16, phosphatidylinositol-linked) expression, slightly increased immediately (30 minutes) postinjection, was found to be strongly decreased on the newly formed population. For comparison, we studied the expression of the PI-linked proteins leukocyte alkaline phosphatase (LAP) and CD14. Intracellular levels of LAP mirrored the biphasic expression pattern as membrane-bound Fc gamma RIII. In contrast, CD14 expression on neutrophils was initially constant, followed by high levels on the newly formed neutrophils. Soluble CD14 levels were found to be elevated transiently, whereas peak levels of soluble Fc gamma III were observed as late as 6 days postinjection. In conclusion, we have shown that G-CSF results in an immunophenotypically and functionally altered neutrophil population for an important part as a result of its effect on myeloid precursor cells.

Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3265-3272 ◽  
Author(s):  
JM Kerst ◽  
M de Haas ◽  
CE van der Schoot ◽  
IC Slaper-Cortenbach ◽  
M Kleijer ◽  
...  

We performed a detailed kinetic study on the in vivo effect of a single subcutaneous dose of granulocyte colony-stimulating factor (G-CSF; 300 micrograms) in four healthy individuals on the expression and function of neutrophil Fc gamma receptors (Fc gamma R). G-CSF did not induce Fc gamma RI (CD64) on circulating neutrophils. However, neutrophils newly formed in response to G-CSF were Fc gamma RI positive and were able to perform antibody-dependent cellular cytotoxicity in an Fc gamma RI- dependent way. Fc gamma RII (CD32) expression was not changed significantly. Fc gamma RIII (CD16, phosphatidylinositol-linked) expression, slightly increased immediately (30 minutes) postinjection, was found to be strongly decreased on the newly formed population. For comparison, we studied the expression of the PI-linked proteins leukocyte alkaline phosphatase (LAP) and CD14. Intracellular levels of LAP mirrored the biphasic expression pattern as membrane-bound Fc gamma RIII. In contrast, CD14 expression on neutrophils was initially constant, followed by high levels on the newly formed neutrophils. Soluble CD14 levels were found to be elevated transiently, whereas peak levels of soluble Fc gamma III were observed as late as 6 days postinjection. In conclusion, we have shown that G-CSF results in an immunophenotypically and functionally altered neutrophil population for an important part as a result of its effect on myeloid precursor cells.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 913-918 ◽  
Author(s):  
HE Broxmeyer ◽  
DE Williams ◽  
S Cooper ◽  
A Waheed ◽  
RK Shadduck

Abstract Pure murine colony-stimulating factor-1 (CSF-1) was assessed for its effects in vivo in mice pretreated seven days earlier with a sublethal dosage of cyclophosphamide. The multipotential (CFU-GEMM), erythroid (BFU-E), and granulocyte-macrophage (CFU-GM) progenitor cells in these mice were in a slowly cycling or noncycling state. Intravenous administration of 20,000 units of CSF-1 to these mice stimulated the hematopoietic progenitors into a rapidly cycling state in the marrow and spleen within three hours. Significant increases in absolute numbers of marrow and spleen CFU-GM and spleen BFU-E and CFU-GEMM were also detected. No endotoxin was detected in the CSF-1 preparation by Limulus lysate assay, and treatment of CSF-1 at 100 degrees C for 20 to 30 minutes completely inactivated the in vitro and in vivo stimulating effects. The effects of CSF-1 were not mimicked by the in vivo administration of 0.1 to 10 ng Escherichia coli lipopolysaccharide. These results suggest that the effects of CSF-1 in vivo were not due to contaminating endotoxin or to a nonspecific protein effect. CSF-1 did not enhance colony formation by BFU-E or stimulate colony formation by CFU-GEMM in vitro, thus suggesting that at least some of the effects of CSF-1 noted in vivo are probably indirect and mediated by accessory cells.


Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1869-1873 ◽  
Author(s):  
MS Cairo ◽  
Y Suen ◽  
L Sender ◽  
ER Gillan ◽  
W Ho ◽  
...  

Abstract Myeloid engraftment after bone marrow transplantation (BMT) is influenced by a number of variables, including cytoreductive chemoradiotherapy, genetic disparity, number of reinfused committed myeloid progenitor cells, healthy microenvironment, and the presence of hematopoietic growth factors. Granulocyte colony-stimulating factor (G- CSF) stimulates proliferation of myeloid progenitor cells and enhances myeloid engraftment after BMT. We investigated the temporal relationship between endogenous G-CSF production and myeloid engraftment in both children and adults after allogeneic (ALLO) and autologous (AUTO) BMT. Circulating endogenous G-CSF levels ranged between 0 and 2552 pg/mL. The correlation coefficient between circulating serum G-CSF levels and the peripheral absolute neutrophil count (ANC) was r = -.875 (P less than .001). The endogenous serum G- CSF level was highest during the first week after BMT, when the ANC was less than or equal to 200/microL (699 +/- 82.3 pg/mL) (P less than .001). Both children and adults demonstrated a similar inverse relationship between circulating G-CSF level and degree of neutropenia. One patient failed to engraft after AUTO BMT and also failed to generate any endogenous G-CSF production. Lastly, once the serum G-CSF level decreased to less than 200 pg/mL, a mean of 6.1 +/- 0.9 days elapsed before the ANC was greater than or equal to 500/microL for 2 consecutive days. This study demonstrates that endogenous G-CSF production is associated with myeloid engraftment in both children and adults after AUTO and ALLO BMT and that the rate of increase and decrease in endogenous G-CSF may be predictive of either failure to engraft or duration of neutropenia.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 913-918
Author(s):  
HE Broxmeyer ◽  
DE Williams ◽  
S Cooper ◽  
A Waheed ◽  
RK Shadduck

Pure murine colony-stimulating factor-1 (CSF-1) was assessed for its effects in vivo in mice pretreated seven days earlier with a sublethal dosage of cyclophosphamide. The multipotential (CFU-GEMM), erythroid (BFU-E), and granulocyte-macrophage (CFU-GM) progenitor cells in these mice were in a slowly cycling or noncycling state. Intravenous administration of 20,000 units of CSF-1 to these mice stimulated the hematopoietic progenitors into a rapidly cycling state in the marrow and spleen within three hours. Significant increases in absolute numbers of marrow and spleen CFU-GM and spleen BFU-E and CFU-GEMM were also detected. No endotoxin was detected in the CSF-1 preparation by Limulus lysate assay, and treatment of CSF-1 at 100 degrees C for 20 to 30 minutes completely inactivated the in vitro and in vivo stimulating effects. The effects of CSF-1 were not mimicked by the in vivo administration of 0.1 to 10 ng Escherichia coli lipopolysaccharide. These results suggest that the effects of CSF-1 in vivo were not due to contaminating endotoxin or to a nonspecific protein effect. CSF-1 did not enhance colony formation by BFU-E or stimulate colony formation by CFU-GEMM in vitro, thus suggesting that at least some of the effects of CSF-1 noted in vivo are probably indirect and mediated by accessory cells.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4366-4369 ◽  
Author(s):  
Kazuhiro Nakamura ◽  
Masao Kobayashi ◽  
Nakao Konishi ◽  
Hiroshi Kawaguchi ◽  
Shin-ichiro Miyagawa ◽  
...  

To define the basis for faulty granulopoiesis in patients with severe congenital neutropenia (SCN), the expression of granulocyte colony-stimulating factor receptor (G-CSFR) in primitive myeloid progenitor cells and their responsiveness to hematopoietic factors were studied. Flow cytometric analysis of bone marrow cells based on the expression of CD34, Kit receptor, and G-CSFR demonstrated a reduced frequency of CD34+/Kit+/ G-CSFR+cells in patients with SCN. The granulocyte-macrophage colony formation of CD34+/Kit+/G-CSFR+ cells in patients was markedly decreased in response to G-CSF alone and to the combination of stem cell factor, the ligand for flk2/flt3, and IL-3 with or without G-CSF in serum-deprived semisolid culture. In contrast, no difference in the responsiveness of CD34+/Kit+/G-CSFR− cells was noted between patients with SCN and subjects without SCN. These results demonstrate that the presence of qualitative and quantitative abnormalities of primitive myeloid progenitor cells expressing G-CSFR may play an important role in the impairment of granulopoiesis in patients with SCN.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4366-4369 ◽  
Author(s):  
Kazuhiro Nakamura ◽  
Masao Kobayashi ◽  
Nakao Konishi ◽  
Hiroshi Kawaguchi ◽  
Shin-ichiro Miyagawa ◽  
...  

Abstract To define the basis for faulty granulopoiesis in patients with severe congenital neutropenia (SCN), the expression of granulocyte colony-stimulating factor receptor (G-CSFR) in primitive myeloid progenitor cells and their responsiveness to hematopoietic factors were studied. Flow cytometric analysis of bone marrow cells based on the expression of CD34, Kit receptor, and G-CSFR demonstrated a reduced frequency of CD34+/Kit+/ G-CSFR+cells in patients with SCN. The granulocyte-macrophage colony formation of CD34+/Kit+/G-CSFR+ cells in patients was markedly decreased in response to G-CSF alone and to the combination of stem cell factor, the ligand for flk2/flt3, and IL-3 with or without G-CSF in serum-deprived semisolid culture. In contrast, no difference in the responsiveness of CD34+/Kit+/G-CSFR− cells was noted between patients with SCN and subjects without SCN. These results demonstrate that the presence of qualitative and quantitative abnormalities of primitive myeloid progenitor cells expressing G-CSFR may play an important role in the impairment of granulopoiesis in patients with SCN.


Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2584-2590 ◽  
Author(s):  
Mirjam H. A. Hermans ◽  
Gert-Jan van de Geijn ◽  
Claudia Antonissen ◽  
Judith Gits ◽  
Daphne van Leeuwen ◽  
...  

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of neutrophil production. Studies in cell lines have established that conserved tyrosines Tyr704, Tyr729, Tyr744, Tyr764 within the cytoplasmic domain of G-CSF receptor (G-CSF-R) contribute significantly to G-CSF–induced proliferation, differentiation, and cell survival. However, it is unclear whether these tyrosines are equally important under more physiologic conditions. Here, we investigated how individual G-CSF-R tyrosines affect G-CSF responses of primary myeloid progenitors. We generated G-CSF-R–deficient mice and transduced their bone marrow cells with tyrosine “null” mutant (m0), single tyrosine “add-back” mutants, or wild-type (WT) receptors. G-CSF–induced responses were determined in primary colony assays, serial replatings, and suspension cultures. We show that removal of all tyrosines had no major influence on primary colony growth. However, adding back Tyr764 strongly enhanced proliferative responses, which was reverted by inhibition of ERK activity. Tyr729, which we found to be associated with the suppressor of cytokine signaling, SOCS3, had a negative effect on colony formation. After repetitive replatings, the clonogenic capacities of cells expressing m0 gradually dropped compared with WT. The presence of Tyr729, but also Tyr704 and Tyr744, both involved in activation of signal transducer and activator of transcription 3 (STAT3), further reduced replating efficiencies. Conversely, Tyr764 greatly elevated the clonogenic abilities of myeloid progenitors, resulting in a more than 104-fold increase of colony-forming cells over m0 after the fifth replating. These findings suggest that tyrosines in the cytoplasmic domain of G-CSF-R, although dispensable for G-CSF–induced colony growth, recruit signaling mechanisms that regulate the maintenance and outgrowth of myeloid progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document