cytoplasmic domain
Recently Published Documents


TOTAL DOCUMENTS

1762
(FIVE YEARS 77)

H-INDEX

122
(FIVE YEARS 5)

2021 ◽  
Vol 13 (621) ◽  
Author(s):  
Michaele B. Manigrasso ◽  
Piul Rabbani ◽  
Lander Egaña-Gorroño ◽  
Nosirudeen Quadri ◽  
Laura Frye ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 919-919
Author(s):  
Lily C Wain ◽  
William R Simmons ◽  
Quan Li ◽  
Ilya Gertsman ◽  
William Eaton ◽  
...  

Abstract Under oxygenated conditions, 4 glycolytic enzymes that perform the terminal steps of glycolysis (phospho-fructoKinase [PFK], lactate dehydrogenase [LDH], aldolase [ALD] and glygeraldehyde 3 phosphate dehydrogenase [GAPDH]) bind to the cytoplasmic domain of band 3. Under deoxy conditions deoxy hemoglobin (Hb) is bound to band 3 and PFK, LDH, ALD and GAPDH are displaced (Campanella et al. PNAS 102, 2005; Blood 112, 2008). We generated transgenic mice in which the sequence encoding the first 35 amino acids of the wild type human band 3 cytoplasmic domain replaced the endogenous mouse band 3 sequences in the Slc4a1 gene, a mutant line in which human amino acids 12-21 were deleted removing the deoxy Hb binding site (-Hb) and a third line in which amino acids 1-11 were deleted creating a high affinity binding site for deoxyHb (++Hb). Erythrocytes from the mutant lines were insensitive to Oxygen concentration resulting in changes in oxygen dependent deformability and other physical properties compared to the wild type line (Chu et al. Blood 128, 2016, Zheng et al. JBC 294, 2019, Zhou et al. Sci. Adv. 5, 2019). We crossed our humanized band 3 mouse strains to the Townes Sickle Cell Disease (SCD) mouse model, maintaining both the human βA and βS alleles to generate human AA, AS and SS mice homozygous for each of the human band 3 cytoplasmic domain sequences. Using an assay in which SS red cells in phosphate buffer are deoxygenated to 6% oxygen over time (Dunkelberger et al., J. Phys. Chem. B 122, 2018), we observed that -Hb band 3/SS mice showed an accelerated rate of sickle cell formation and a higher percent of sickled cells than wild type band 3/SS mice (p<0.01). Conversely, ++Hb band 3/SS mice showed an inhibition of both the rate of sickling and the precent of sickled cells compared to wild type band 3/SS mice (p<0.05). We hypothesized that the inability of the glycolytic enzymes to reversibly bind to band 3 in the mutant mice were responsible for the differences in sickling. To test this hypothesis, we analyzed a panel of 28 cellular metabolites in 12 mice (6 female, 6 male) of each genotype: wild type band 3/AA, -AS and -SS, -Hb band 3/AA, -AS, -SS and ++Hb/AA, -AS, -SS. The metabolites were quantified by LC-MS/MS using an API 4500 triple quadrupole mass spectrometer (AB Sciex), with chromatographic resolution enabled on a polymeric amino column (apHera by Supelco) under alkaline mobile phase conditions (pH ~9.3). Stable isotope dilution and 8pt calibration curves allowed the absolute quantification of each metabolite. Consistent with the constitutive binding of the terminal glycolytic enzymes to band 3 in -Hb erythrocytes, glycolysis was inhibited after the phosphoenol pyruvate step, as evidenced by significant accumulation of the intermediates at top of the glycolysis pathway, including fructose 1,6 biphosphate (FBP; p<0.01), dihydroxyacetone phosphate/ glyceraldehyde-3-phosphate (G3P; p<0.01), and 3-phosphoglycerate/2-phosphoglycerate (PG; p<0.01). In the ++Hb mutant where the terminal glycolytic enzymes are constitutively displaced from band 3, significantly lower levels of FBP, G3P and PG were observed (p<0.01). The levels of these metabolites in wild type band 3/SS erythrocytes were intermediate between the two mutant strains. We hypothesized that the accumulation of FBP, G3P and PG contributed to the increased rate of sickling in the -Hb band 3/SS mice. To test this, we incubated wild type band 3/SS cells with either FBP or PG. Both intermediates increased the rate of sickle cell formation and percentage of sickled cells in a dose dependent fashion with no alteration in any RBC indices including MCV and osmotic fragility. We next hypothesized that reduction of the levels of glycolytic intermediates would have an antisickling effect. To test this, we incubated wild type band 3/SS cells with 2,3 diphosphoglycerol (DPG), which is a potent inhibitor of glycolysis. We found that DPG treatment led to a dose dependent decrease in the rate of sickle cell formation and percentage of sickled cells, again with no alteration in any RBC indices including MCV and osmotic fragility. We conclude that the accumulation of glycolytic intermediates leads to increased sickle cell formation. We propose that reduction in the levels of glycolytic intermediates either by accelerating the terminal stages of glycolysis or by redirection to the pentose phosphate pathway may offer a means to treat SCD. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
pp. 101337
Author(s):  
Sang W. Hyun ◽  
Akihiro Imamura ◽  
Hideharu Ishida ◽  
Kurt H. Piepenbrink ◽  
Simeon E. Goldblum ◽  
...  

2021 ◽  
Vol 297 (4) ◽  
pp. 101167
Author(s):  
Nina Gubensäk ◽  
Evelyne Schrank ◽  
Christoph Hartlmüller ◽  
Christoph Göbl ◽  
Fabio S. Falsone ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10190
Author(s):  
Serena Barozzi ◽  
Valeria Bozzi ◽  
Daniela De De Rocco ◽  
Tania Giangregorio ◽  
Patrizia Noris ◽  
...  

Bernard-Soulier syndrome (BSS) is an autosomal-recessive bleeding disorder caused by biallelic variants in the GP1BA, GP1BB, and GP9 genes encoding the subunits GPIbα, GPIbβ, and GPIX of the GPIb-IX complex. Pathogenic variants usually affect the extracellular or transmembrane domains of the receptor subunits. We investigated a family with BSS caused by the homozygous c.528_550del (p.Arg177Serfs*124) variant in GP1BB, which is the first mutation ever identified that affects the cytoplasmic domain of GPIbβ. The loss of the intracytoplasmic tail of GPIbβ results in a mild form of BSS, characterized by only a moderate reduction of the GPIb-IX complex expression and mild or absent bleeding tendency. The variant induces a decrease of the total platelet expression of GPIbβ; however, all of the mutant subunit expressed in platelets is correctly assembled into the GPIb-IX complex in the plasma membrane, indicating that the cytoplasmic domain of GPIbβ is not involved in assembly and trafficking of the GPIb-IX receptor. Finally, the c.528_550del mutation exerts a dominant effect and causes mild macrothrombocytopenia in heterozygous individuals, as also demonstrated by the investigation of a second unrelated pedigree. The study of this novel GP1BB variant provides new information on pathophysiology of BSS and the assembly mechanisms of the GPIb-IX receptor.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maorong Wen ◽  
Yunlei Cao ◽  
Bin Wu ◽  
Taoran Xiao ◽  
Ruiyu Cao ◽  
...  

AbstractThe cytoplasmic domain of PD-L1 (PD-L1-CD) regulates PD-L1 degradation and stability through various mechanism, making it an attractive target for blocking PD-L1-related cancer signaling. Here, by using NMR and biochemical techniques we find that the membrane association of PD-L1-CD is mediated by electrostatic interactions between acidic phospholipids and basic residues in the N-terminal region. The absence of the acidic phospholipids and replacement of the basic residues with acidic residues abolish the membrane association. Moreover, the basic-to-acidic mutations also decrease the cellular abundance of PD-L1, implicating that the electrostatic interaction with the plasma membrane mediates the cellular levels of PD-L1. Interestingly, distinct from its reported function as an activator of AMPK in tumor cells, the type 2 diabetes drug metformin enhances the membrane dissociation of PD-L1-CD by disrupting the electrostatic interaction, thereby decreasing the cellular abundance of PD-L1. Collectively, our study reveals an unusual regulatory mechanism that controls the PD-L1 level in tumor cells, suggesting an alternative strategy to improve the efficacy of PD-L1-related immunotherapies.


2021 ◽  
Author(s):  
Boris Sieber ◽  
Fangfang Lu ◽  
Stephen M Stribbling ◽  
Adam G Grieve ◽  
Anderson J Ryan ◽  
...  

Dysregulation of the ERBB/EGFR signalling pathway causes multiple types of cancer (1, 2). Accordingly, ADAM17, the primary shedding enzyme that releases and activates ERBB ligands, is tightly regulated. It has recently become clear that iRhoms, inactive members of the rhomboid-like superfamily, are regulatory cofactors for ADAM17 (3, 4). Here we show that oncogenic KRAS mutants target the cytoplasmic domain of iRhom2 to induce ADAM17-dependent shedding and the release of ERBB ligands. Activation of ERK1/2 by oncogenic KRAS induces the phosphorylation of iRhom2, recruitment of the phospho-binding 14-3-3 proteins, and consequent ADAM17-dependent shedding of ERBB ligands. In addition, cancer-associated mutations in iRhom2 act as sensitisers in this pathway by further increasing KRAS-induced shedding of ERBB ligands. This mechanism is conserved in lung cancer cells, where iRhom activity is required for tumour xenograft growth. In this context, the activity of oncogenic KRAS is modulated by the iRhom2-dependent release of ERBB ligands, thus placing iRhom2 as a central component of a positive feedback loop in lung cancer cells. Overall, the cytoplasmic domain of iRhom2 is a critical component of KRAS-induced oncogenesis of lung cancer cells. Both ADAM17 and iRhom2 have also been implicated in a wide range of other cancers (5-10), so the mechanism we have revealed may also have wider oncogenic significance.


2021 ◽  
Vol 22 (15) ◽  
pp. 7918
Author(s):  
Jisun Hwang ◽  
Bohee Jang ◽  
Ayoung Kim ◽  
Yejin Lee ◽  
Joonha Lee ◽  
...  

Despite the known importance of the transmembrane domain (TMD) of syndecan receptors in cell adhesion and signaling, the molecular basis for syndecan TMD function remains unknown. Using in vivo invertebrate models, we found that mammalian syndecan-2 rescued both the guidance defects in C. elegans hermaphrodite-specific neurons and the impaired development of the midline axons of Drosophila caused by the loss of endogenous syndecan. These compensatory effects, however, were reduced significantly when syndecan-2 dimerization-defective TMD mutants were introduced. To further investigate the role of the TMD, we generated a chimera, 2eTPC, comprising the TMD of syndecan-2 linked to the cytoplasmic domain of platelet-derived growth factor receptor (PDGFR). This chimera exhibited SDS-resistant dimer formation that was lost in the corresponding dimerization-defective syndecan-2 TMD mutant, 2eT(GL)PC. Moreover, 2eTPC specifically enhanced Tyr 579 and Tyr 857 phosphorylation in the PDGFR cytoplasmic domain, while the TMD mutant failed to support such phosphorylation. Finally, 2eTPC, but not 2eT(GL)PC, induced phosphorylation of Src and PI3 kinase (known downstream effectors of Tyr 579 phosphorylation) and promoted Src-mediated migration of NIH3T3 cells. Taken together, these data suggest that the TMD of a syndecan-2 specifically regulates receptor cytoplasmic domain function and subsequent downstream signaling events controlling cell behavior.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1814
Author(s):  
Thankamani Karthika ◽  
Jeswin Joseph ◽  
V. R. Akshay Das ◽  
Niranjana Nair ◽  
Packirisamy Charulekha ◽  
...  

Recently emerged severe acute respiratory syndrome coronavirus (SARS-CoV)-1 and -2 initiate virus infection by binding of their spike glycoprotein with the cell-surface receptor angiotensin-converting enzyme 2 (ACE2) and enter into the host cells mainly via the clathrin-mediated endocytosis pathway. However, the internalization process post attachment with the receptor is not clear for both SARS-CoV-1 and -2. Understanding the cellular factor/s or pathways used by these CoVs for internalization might provide insights into viral pathogenesis, transmission, and development of novel therapeutics. Here, we demonstrated that the cytoplasmic tail of ACE2 is not essential for the entry of SARS-CoV-1 and -2 by using bioinformatics, mutational, confocal imaging, and pseudotyped SARS-CoVs infection studies. ACE2 cytoplasmic domain (cytACE2) contains a conserved internalization motif and eight putative phosphorylation sites. Complete cytoplasmic domain deleted ACE2 (∆cytACE2) was properly synthesized and presented on the surface of HEK293T and BHK21 cells like wtACE2. The SARS-CoVs S1 or RBD of spike protein binds and colocalizes with the receptors followed by internalization into the host cells. Moreover, pseudotyped SARS-CoVs entered into wtACE2- and ∆cytACE2-transfected cells but not into dipeptidyl peptidase 4 (DPP4)-expressing cells. Their entry was significantly inhibited by treatment with dynasore, a dynamin inhibitor, and NH4Cl, an endosomal acidification inhibitor. Furthermore, SARS-CoV antibodies and the soluble form of ACE2-treated pseudotyped SARS-CoVs were unable to enter the wtACE2 and ∆cytACE2-expressing cells. Altogether, our data show that ACE2 cytoplasmic domain signaling is not essential for the entry of SARS-CoV-1 and -2 and that SARS-CoVs entry might be mediated via known/unknown host factor/s.


2021 ◽  
Author(s):  
Julie M. Button ◽  
Suchetana Mukhopadhyay

Alphavirus capsid proteins (CPs) have two domains: the N-terminal domain (NTD) that interacts with the viral RNA, and the C-terminal domain (CTD) that forms CP-CP interactions and interacts with the cytoplasmic domain of the E2 spike protein (cdE2). In this study, we examine how mutations in the CP NTD affect CP CTD interactions with cdE2. We changed the length and/or charge of the NTD of Ross River virus CP and found that changing the charge of the NTD has a greater impact on core and virion assembly than changing the length of the NTD. The NTD CP insertion mutants are unable to form cytoplasmic cores during infection but they do form cores or core-like structures in virions. Our results are consistent with cdE2 having a role in core maturation during virion assembly and rescuing core formation when cytoplasmic cores are not assembled. We go on to find that the isolated cores from some mutant virions are now assembly competent in that they can be disassembled and reassembled back into cores. These results show how the two domains of CP may have distinct yet coordinated roles.


Sign in / Sign up

Export Citation Format

Share Document