scholarly journals ChIP-on-chip significance analysis reveals ubiquitous transcription factor binding

2007 ◽  
Vol 8 (S8) ◽  
Author(s):  
Adam A Margolin ◽  
Teresa Palomero ◽  
Adolfo A Ferrando ◽  
Andrea Califano ◽  
Gustavo Stolovitzky
2013 ◽  
Vol 11 (01) ◽  
pp. 1340004 ◽  
Author(s):  
IVAN KULAKOVSKIY ◽  
VICTOR LEVITSKY ◽  
DMITRY OSHCHEPKOV ◽  
LEONID BRYZGALOV ◽  
ILYA VORONTSOV ◽  
...  

Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) became a method of choice to locate DNA segments bound by different regulatory proteins. ChIP-Seq produces extremely valuable information to study transcriptional regulation. The wet-lab workflow is often supported by downstream computational analysis including construction of models of nucleotide sequences of transcription factor binding sites in DNA, which can be used to detect binding sites in ChIP-Seq data at a single base pair resolution. The most popular TFBS model is represented by positional weight matrix (PWM) with statistically independent positional weights of nucleotides in different columns; such PWMs are constructed from a gapless multiple local alignment of sequences containing experimentally identified TFBSs. Modern high-throughput techniques, including ChIP-Seq, provide enough data for careful training of advanced models containing more parameters than PWM. Yet, many suggested multiparametric models often provide only incremental improvement of TFBS recognition quality comparing to traditional PWMs trained on ChIP-Seq data. We present a novel computational tool, diChIPMunk, that constructs TFBS models as optimal dinucleotide PWMs, thus accounting for correlations between nucleotides neighboring in input sequences. diChIPMunk utilizes many advantages of ChIPMunk, its ancestor algorithm, accounting for ChIP-Seq base coverage profiles ("peak shape") and using the effective subsampling-based core procedure which allows processing of large datasets. We demonstrate that diPWMs constructed by diChIPMunk outperform traditional PWMs constructed by ChIPMunk from the same ChIP-Seq data. Software website: http://autosome.ru/dichipmunk/


2016 ◽  
Author(s):  
Caleb Kipkurui Kibet ◽  
Philip Machanick

AbstractWe describe MARS (Motif Assessment and Ranking Suite), a web-based suite of tools used to evaluate and rank PWM-based motifs. The increased number of learned motif models that are spread across databases and in different PWM formats, leading to a choice dilemma among the users, is our motivation. This increase has been driven by the difficulty of modelling transcription factor binding sites and the advance in high-throughput sequencing technologies at a continually reducing cost. Therefore, several experimental techniques have been developed resulting in diverse motif-finding algorithms and databases. We collate a wide variety of available motifs into a benchmark database, including the corresponding experimental ChIP-seq and PBM data obtained from ENCODE and UniPROBE databases, respectively. The implemented tools include: a data-independent consistency-based motif assessment and ranking (CB-MAR), which is based on the idea that ‘correct motifs’ are more similar to each other while incorrect motifs will differ from each other; and a scoring and classification-based algorithms, which rank binding models by their ability to discriminate sequences known to contain binding sites from those without. The CB-MAR and scoring techniques have a 0.86 and 0.73 median rank correlation using ChIP-seq and PBM respectively. Best motifs selected by CB-MAR achieve a mean AUC of 0.75, comparable to those ranked by held out data at 0.76 – this is based on ChIP-seq motif discovery using five algorithms on 110 transcription factors. We have demonstrated the benefit of this web server in motif choice and ranking, as well as in motif discovery. It can be accessed at http://www.bioinf.ict.ru.ac.za/.


2008 ◽  
Vol 5 (9) ◽  
pp. 829-834 ◽  
Author(s):  
Anton Valouev ◽  
David S Johnson ◽  
Andreas Sundquist ◽  
Catherine Medina ◽  
Elizabeth Anton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document