scholarly journals DOA estimation using multiple measurement vector model with sparse solutions in linear array scenarios

Author(s):  
Seyyed Moosa Hosseini ◽  
R. A. Sadeghzadeh ◽  
Bal Singh Virdee
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Le Kang ◽  
Tian-chi Sun ◽  
Jia-cheng Ni ◽  
Qun Zhang ◽  
Ying Luo

Downward-looking linear array synthetic aperture radar (DLLA SAR) is a kind of three-dimensional (3-D) radar imaging system. To obtain the superresolution along the crosstrack direction of DLLA SAR, the sparse regularization models with single measurement vector (SMV) have been widely applied. However, the robustness of the sparse regularization models with SMV is unsatisfactory, especially in the low signal-to-noise rate (SNR) environment. To solve this problem, we proposed a novel imaging method for DLLA SAR based on the multiple measurement vector (MMV) model with L 2 , 1 -norm. At first, we exchange the processing order between the along-track (AT) domain and the crosstrack (CT) domain to keep the same sparse structure of the signal in the crosstrack domain so that we can establish the imaging problem as a sparse regularization model based on the MMV model. Moreover, the mixed L 2 , 1 -norm is introduced into the regularization term of the MMV model. Finally, the modified orthogonal matching pursuit (OMP) algorithm is designed for the MMV model with the L 2 , 1 -norm. The simulations verify that the proposed method has better performance in the lower SNR environment and requires lower computation compared with the conventional methods.


Author(s):  
Raghu K. ◽  
Prameela Kumari N.

In this paper, the problem of direction of arrival estimation is addressed by employing Bayesian learning technique in sparse domain. This paper deals with the inference of sparse Bayesian learning (SBL) for both single measurement vector (SMV) and multiple measurement vector (MMV) and its applicability to estimate the arriving signal’s direction at the receiving antenna array; particularly considered to be a uniform linear array. We also derive the hyperparameter updating equations by maximizing the posterior of hyperparameters and exhibit the results for nonzero hyperprior scalars. The results presented in this paper, shows that the resolution and speed of the proposed algorithm is comparatively improved with almost zero failure rate and minimum mean square error of signal’s direction estimate.


Sign in / Sign up

Export Citation Format

Share Document