measurement vector
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 30)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Le Kang ◽  
Tian-chi Sun ◽  
Jia-cheng Ni ◽  
Qun Zhang ◽  
Ying Luo

Downward-looking linear array synthetic aperture radar (DLLA SAR) is a kind of three-dimensional (3-D) radar imaging system. To obtain the superresolution along the crosstrack direction of DLLA SAR, the sparse regularization models with single measurement vector (SMV) have been widely applied. However, the robustness of the sparse regularization models with SMV is unsatisfactory, especially in the low signal-to-noise rate (SNR) environment. To solve this problem, we proposed a novel imaging method for DLLA SAR based on the multiple measurement vector (MMV) model with L 2 , 1 -norm. At first, we exchange the processing order between the along-track (AT) domain and the crosstrack (CT) domain to keep the same sparse structure of the signal in the crosstrack domain so that we can establish the imaging problem as a sparse regularization model based on the MMV model. Moreover, the mixed L 2 , 1 -norm is introduced into the regularization term of the MMV model. Finally, the modified orthogonal matching pursuit (OMP) algorithm is designed for the MMV model with the L 2 , 1 -norm. The simulations verify that the proposed method has better performance in the lower SNR environment and requires lower computation compared with the conventional methods.


2021 ◽  
Author(s):  
Jyun-You Chen ◽  
Ching-Lon Huang ◽  
Kuo-Yuan Hung ◽  
Shih-Chin Yang

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7617
Author(s):  
Grzegorz Kłosowski ◽  
Anna Hoła ◽  
Tomasz Rymarczyk ◽  
Łukasz Skowron ◽  
Tomasz Wołowiec ◽  
...  

This paper refers to an original concept of tomographic measurement of brick wall humidity using an algorithm based on long short-term memory (LSTM) neural networks. The measurement vector was treated as a data sequence with a single time step in the presented study. This approach enabled the use of an algorithm utilising a recurrent deep neural network of the LSTM type as a system for converting the measurement vector into output images. A prototype electrical impedance tomograph was used in the research. The LSTM network, which is often employed for time series classification, was used to tackle the inverse problem. The task of the LSTM network was to convert 448 voltage measurements into spatial images of a selected section of a historical building’s brick wall. The 3D tomographic image mesh consisted of 11,297 finite elements. A novelty is using the measurement vector as a single time step sequence consisting of 448 features (channels). Through the appropriate selection of network parameters and the training algorithm, it was possible to obtain an LSTM network that reconstructs images of damp brick walls with high accuracy. Additionally, the reconstruction times are very short.


Author(s):  
Raghu K. ◽  
Prameela Kumari N.

In this paper, the problem of direction of arrival estimation is addressed by employing Bayesian learning technique in sparse domain. This paper deals with the inference of sparse Bayesian learning (SBL) for both single measurement vector (SMV) and multiple measurement vector (MMV) and its applicability to estimate the arriving signal’s direction at the receiving antenna array; particularly considered to be a uniform linear array. We also derive the hyperparameter updating equations by maximizing the posterior of hyperparameters and exhibit the results for nonzero hyperprior scalars. The results presented in this paper, shows that the resolution and speed of the proposed algorithm is comparatively improved with almost zero failure rate and minimum mean square error of signal’s direction estimate.


2021 ◽  
Vol 13 (15) ◽  
pp. 2915
Author(s):  
Zihao Huang ◽  
Shijin Chen ◽  
Chengpeng Hao ◽  
Danilo Orlando

In bearings-only target tracking, the pseudo-linear Kalman filter (PLKF) attracts much attention because of its stability and its low computational burden. However, the PLKF’s measurement vector and the pseudo-linear noise are correlated, which makes it suffer from bias problems. Although the bias-compensated PLKF (BC–PLKF) and the instrumental variable-based PLKF (IV–PLKF) can eliminate the bias, they only work well when the target behaves with non-manoeuvring movement. To extend the PLKF to the manoeuvring target tracking scenario, an unbiased PLKF (UB–PLKF) algorithm, which splits the noise away from the measurement vector directly, is proposed. Based on the results of the UB–PLKF, we also propose its velocity-constrained version (VC–PLKF) to further improve the performance. Simulations show that the UB–PLKF and VC–PLKF outperform the BC–PLKF and IV–PLKF both in non-manoeuvring and manoeuvring scenarios.


2021 ◽  
Vol 7 ◽  
pp. e630
Author(s):  
Shuhui Bi ◽  
Liyao Ma ◽  
Tao Shen ◽  
Yuan Xu ◽  
Fukun Li

Due to some harsh indoor environments, the signal of the ultra wide band (UWB) may be lost, which makes the data fusion filter can not work. For overcoming this problem, the neural network (NN) assisted Kalman filter (KF) for fusing the UWB and the inertial navigation system (INS) data seamlessly is present in this work. In this approach, when the UWB data is available, both the UWB and the INS are able to provide the position information of the quadrotor, and thus, the KF is used to provide the localization information by the fusion of position difference between the INS and the UWB, meanwhile, the KF can provide the estimation of the INS position error, which is able to assist the NN to build the mapping between the state vector and the measurement vector off-line. The NN can estimate the KF’s measurement when the UWB data is unavailable. For confirming the effectiveness of the proposed method, one real test has been done. The test’s results demonstrate that the proposed NN assisted KF is effective to the fusion of INS and UWB data seamlessly, which shows obvious improvement of localization accuracy. Compared with the LS-SVM assisted KF, the proposed NN assisted KF is able to reduce the localization error by about 54.34%.


Author(s):  
Olivier Lai ◽  
Mark Chun ◽  
Ryan Dungee ◽  
Jessica Lu ◽  
Marcel Carbillet

Abstract Adaptive optics systems require a calibration procedure to operate, whether in closed loop or even more importantly in forward control. This calibration usually takes the form of an interaction matrix and is a measure of the response on the wavefront sensor to wavefront corrector stimulus. If this matrix is sufficiently well conditioned, it can be inverted to produce a control matrix, which allows to compute the optimal commands to apply to the wavefront corrector for a given wavefront sensor measurement vector. Interaction matrices are usually measured by means of an artificial source at the entrance focus of the adaptive optics system; however, adaptive secondary mirrors on Cassegrain telescopes offer no such focus and the measurement of their interaction matrices becomes more challenging and needs to be done on-sky using a natural star. The most common method is to generate a theoretical or simulated interaction matrix and adjust it parametrically (for example, decenter, magnification, rotation) using on-sky measurements. We propose a novel method of measuring on-sky interaction matrices ab initio from the telemetry stream of the AO system using random patterns on the deformable mirror with diagonal commands covariance matrices. The approach, being developed for the adaptive secondary mirror upgrade for the imaka wide-field AO system on the UH2.2m telescope project, is shown to work on-sky using the current imaka testbed.


Sign in / Sign up

Export Citation Format

Share Document