scholarly journals Weighted version of Hermite–Hadamard type inequalities for geometrically quasi-convex functions and their applications

2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Sofian Obeidat ◽  
Muhammad Amer Latif
Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1933
Author(s):  
Mohsen Rostamian Delavar ◽  
Artion Kashuri ◽  
Manuel De La De La Sen

Numerical approximations of definite integrals and related error estimations can be made using Simpson’s rules (inequalities). There are two well-known rules: Simpson’s 13 rule or Simpson’s quadrature formula and Simpson’s 38 rule or Simpson’s second formula. The aim of the present paper is to extend several inequalities that hold for Simpson’s 13 rule to Simpson’s 38 rule. More precisely, we prove a weighted version of Simpson’s second type inequality and some Simpson’s second type inequalities for Lipschitzian, bounded variations, convex functions and the functions that belong to Lq. Some applications of the second type Simpson’s inequalities relate to approximations of special means and Simpson’s 38 formula, and moments of random variables are made.


Author(s):  
Sever S. Dragomir

Some new inequalities of Hermite-Hadamard type for GA-convex functions defined on positive intervals are given. Refinements and weighted version of known inequalities are provided. Some applications for special means are also obtained.


2021 ◽  
Vol 5 (4) ◽  
pp. 253
Author(s):  
Ghulam Farid ◽  
Muhammad Yussouf ◽  
Kamsing Nonlaopon

Integral operators of a fractional order containing the Mittag-Leffler function are important generalizations of classical Riemann–Liouville integrals. The inequalities that are extensively studied for fractional integral operators are the Hadamard type inequalities. The aim of this paper is to find new versions of the Fejér–Hadamard (weighted version of the Hadamard inequality) type inequalities for (α, h-m)-p-convex functions via extended generalized fractional integrals containing Mittag-Leffler functions. These inequalities hold simultaneously for different types of well-known convexities as well as for different kinds of fractional integrals. Hence, the presented results provide more generalized forms of the Hadamard type inequalities as compared to the inequalities that already exist in the literature.


2020 ◽  
Vol 4 (2) ◽  
pp. 1-14
Author(s):  
Pardeep Kaur ◽  
◽  
Sukhwinder Singh Billing ◽  

Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 1009-1016 ◽  
Author(s):  
Ahmet Akdemir ◽  
Özdemir Emin ◽  
Ardıç Avcı ◽  
Abdullatif Yalçın

In this paper, firstly we prove an integral identity that one can derive several new equalities for special selections of n from this identity: Secondly, we established more general integral inequalities for functions whose second derivatives of absolute values are GA-convex functions based on this equality.


Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 5945-5953 ◽  
Author(s):  
İmdat İsçan ◽  
Sercan Turhan ◽  
Selahattin Maden

In this paper, we give a new concept which is a generalization of the concepts quasi-convexity and harmonically quasi-convexity and establish a new identity. A consequence of the identity is that we obtain some new general inequalities containing all of the Hermite-Hadamard and Simpson-like type for functions whose derivatives in absolute value at certain power are p-quasi-convex. Some applications to special means of real numbers are also given.


Sign in / Sign up

Export Citation Format

Share Document