scholarly journals A fractional differential equation with multi-point strip boundary condition involving the Caputo fractional derivative and its Hyers–Ulam stability

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mehboob Alam ◽  
Akbar Zada ◽  
Ioan-Lucian Popa ◽  
Alireza Kheiryan ◽  
Shahram Rezapour ◽  
...  

AbstractIn this work, we investigate the existence, uniqueness, and stability of fractional differential equation with multi-point integral boundary conditions involving the Caputo fractional derivative. By utilizing the Laplace transform technique, the existence of solution is accomplished. By applying the Bielecki-norm and the classical fixed point theorem, the Ulam stability results of the studied system are presented. An illustrative example is provided at the last part to validate all our obtained theoretical results.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Min Li ◽  
Jian-Ping Sun ◽  
Ya-Hong Zhao

In this paper, we consider a class of boundary value problems of nonlinear fractional differential equation with integral boundary conditions. By applying the monotone iterative method and some inequalities associated with Green’s function, we obtain the existence of minimal and maximal positive solutions and establish two iterative sequences for approximating the solutions to the above problem. It is worth mentioning that these iterative sequences start off with zero function or linear function, which is useful and feasible for computational purpose. An example is also included to illustrate the main result of this paper.


2016 ◽  
Vol 12 (11) ◽  
pp. 6807-6811
Author(s):  
Haribhau Laxman Tidke

We study the uniquenessof solutionfor nonlinear implicit fractional differential equation with initial condition involving Caputo fractional derivative. The technique used in our analysis is based on an application of Bihari and Medved inequalities.


2020 ◽  
Vol 40 (2) ◽  
pp. 227-239
Author(s):  
John R. Graef ◽  
Said R. Grace ◽  
Ercan Tunç

This paper is concerned with the asymptotic behavior of the nonoscillatory solutions of the forced fractional differential equation with positive and negative terms of the form \[^{C}D_{c}^{\alpha}y(t)+f(t,x(t))=e(t)+k(t)x^{\eta}(t)+h(t,x(t)),\] where \(t\geq c \geq 1\), \(\alpha \in (0,1)\), \(\eta \geq 1\) is the ratio of positive odd integers, and \(^{C}D_{c}^{\alpha}y\) denotes the Caputo fractional derivative of \(y\) of order \(\alpha\). The cases \[y(t)=(a(t)(x^{\prime}(t))^{\eta})^{\prime} \quad \text{and} \quad y(t)=a(t)(x^{\prime}(t))^{\eta}\] are considered. The approach taken here can be applied to other related fractional differential equations. Examples are provided to illustrate the relevance of the results obtained.


2019 ◽  
Vol 3 (3) ◽  
pp. 44
Author(s):  
Bashir Ahmad ◽  
Madeaha Alghanmi ◽  
Ahmed Alsaedi ◽  
Sotiris K. Ntouyas

We discuss the existence of solutions for a Caputo type multi-term nonlinear fractional differential equation supplemented with generalized integral boundary conditions. The modern tools of functional analysis are applied to achieve the desired results. Examples are constructed for illustrating the obtained work. Some new results follow as spacial cases of the ones reported in this paper.


Sign in / Sign up

Export Citation Format

Share Document