scholarly journals Excessive anterior tibial translation in the contralateral uninjured limb is significantly associated with ramp lesion in anterior cruciate ligament injury

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuki Asai ◽  
Junsuke Nakase ◽  
Rikuto Yoshimizu ◽  
Mitsuhiro Kimura ◽  
Hiroyuki Tsuchiya

Abstract Purpose This study aimed to evaluate the excessive anterior tibial translation (ATT) and muscle strength of patients with ramp lesions. We hypothesised that the higher ATT, lower hamstring-to-quadriceps (HQ) ratio, and higher flexion peak torque influenced by semimembranosus would be associated with ramp lesions. Methods One hundred and twenty-one patients who underwent anterior cruciate ligament (ACL) reconstruction were retrospectively evaluated. Clinical evaluation included ATT of the contralateral uninjured limb measured using a KT-1000 arthrometer, the knee flexor and extensor muscle strength of the contralateral uninjured limb at 60°/s and 180°/s of an angular velocity measured using an isokinetic dynamometer, and HQ ratio at 60°/s and 180°/s during the preoperative state. Binary stepwise logistic regression analysis was performed to evaluate the risk factors of ramp lesions. Results Ramp lesions were found in 27 cases of ACL injuries (27/121, 22.3%). Male sex (odds ratio [OR], 2.913; 95% confidence interval [CI], 1.090–7.787; P = 0.033), longer time between injury to surgery (OR, 2.225; 95% CI, 1.074–4.608; P = 0.031), and higher ATT in the contralateral uninjured limb (OR, 1.502; 95% CI, 1.046–2.159; P = 0.028) were indicated as the independent risk factors of the presence of ramp lesion associated with an ACL injury. Conclusions Male sex, longer period from injury to surgery, and higher ATT in the contralateral uninjured limb were significantly associated with ramp lesion. These findings are advantageous for identifying patients with a greater risk of developing a ramp lesion with an ACL injury in the clinical setting. Level of evidence Level IV

Author(s):  
Daniel V. Boguszewski ◽  
Jason T. Shearn ◽  
Christopher T. Wagner ◽  
David L. Butler

As many as 250,000 people suffer anterior cruciate ligament (ACL) injury annually [1]. As the primary ligamentous restraint to anterior tibial translation [2–3], the ACL is surgically reconstructed in an attempt to restore knee stability. However, up to 10–25% of reconstructions still fail [4]. While reconstructions restore antero-posterior kinematics, abnormal kinematics persist in other directions [5], leading to a shift in cartilage contact and poor adaptation to altered load [5]. With or without reconstruction, the likely prognosis after ACL injury is long-term osteoarthritis [6]. Improving this outcome requires assessment of the limitations of ACL graft reconstruction compared to normal ACL forces during simulated activities of daily living (ADLs). Our objective in this study was to evaluate the magnitude and temporal changes in force for the intact versus ACL-reconstructed knee over 2000 cycles of a simulated ADL.


2001 ◽  
Vol 29 (6) ◽  
pp. 771-776 ◽  
Author(s):  
Jürgen Höher ◽  
Akihiro Kanamori ◽  
Jennifer Zeminski ◽  
Freddie H. Fu ◽  
Savio L-Y. Woo

Ten cadaveric knees (donor ages, 36 to 66 years) were tested at full extension, 15°, 30°, and 90° of flexion under a 134-N anterior tibial load. In each knee, the kinematics as well as in situ force in the graft were compared when the graft was fixed with the tibia in four different positions: full knee extension while the surgeon applied a posterior tibial load (Position 1), 30° of flexion with the tibia at the neutral position of the intact knee (Position 2), 30° of flexion with a 67-N posterior tibial load (Position 3), and 30° of flexion with a 134-N posterior tibial load (Position 4). For Positions 1 and 2, the anterior tibial translation and the in situ forces were up to 60% greater and 36% smaller, respectively, than that of the intact knee. For Position 3, knee kinematics and in situ forces were closest to those observed in the intact knee. For Position 4, anterior tibial translation was significantly decreased by up to 2 mm and the in situ force increased up to 31 N. These results suggest that the position of the tibia during graft fixation is an important consideration for the biomechanical performance of an anterior cruciate ligament-reconstructed knee.


2005 ◽  
Vol 33 (6) ◽  
pp. 856-863 ◽  
Author(s):  
Robert H.P. Kilger ◽  
Maribeth Thomas ◽  
Scott Hanford ◽  
Dimosthenis A. Alaseirlis ◽  
Hans H. Paessler ◽  
...  

Background A variety of fixation devices are used for anterior cruciate ligament reconstruction with hamstring tendon grafts. These devices increase costs and can present artifacts in magnetic resonance imaging as well as complications in revision surgery. Therefore, a novel knot/press-fit technique that requires no implantable devices has been introduced. Null Hypothesis The knot/press-fit technique restores knee kinematics as well as the more commonly used EndoButton CL fixation and has similar biomechanical properties as other devices published in the literature. Study Design Controlled laboratory study. Methods Eight fresh-frozen cadaveric knees (52 ± 7 years) were tested using a robotic/universal force-moment sensor testing system. The knee kinematics of the intact, anterior cruciate ligament-deficient, EndoButton-reconstructed, and knot/pressfit-reconstructed knee in response to both a 134-N anterior tibial load and a combined rotatory load at multiple knee flexion angles was determined. Differences between the 4 knee states were evaluated with a 2-factor repeated-measures analysis of variance (P <. 05). To determine the stiffness and strength of the knot/press-fit fixation, the femur-graft-tibia complex was tested in uniaxial tension. Results In response to an anterior tibial load, the anterior tibial translation for the knot/press-fit reconstruction was found to be not significantly different from that of the intact anterior cruciate ligament as well as that of the EndoButton reconstruction (P >. 05). In response to a combined rotatory load, neither reconstruction procedure could effectively reduce the coupled anterior tibial translation to that of the intact knee, and no significant difference between the 2 reconstructions could be detected (P >. 05). The stiffness of the knot/press-fit complex was found to be 37.8 ± 9.6 N/mm, and the load at failure was 540 ± 97.7 N, which is equal to other devices published in the literature. Clinical Relevance The experiment suggests that the knot/press-fit technique may be a reliable alternative for the femoral fixation of hamstring tendon grafts.


Sign in / Sign up

Export Citation Format

Share Document