Efficient loop antenna modeling for zero-offset, off-ground electromagnetic induction in multilayered media

Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. WA125-WA134 ◽  
Author(s):  
Davood Moghadas ◽  
Frédéric André ◽  
Harry Vereecken ◽  
Sébastien Lambot

Retrieval of the subsurface electrical properties from electromagnetic induction (EMI) data using inverse modeling relies in particular on the accuracy of the considered EMI model. We have developed a new EMI approach whereby a zero-offset, off-ground loop antenna is efficiently modeled using frequency-dependent, complex linear transfer functions and the air subsurface is described by a Green’s function for wave propagation in 3D multilayered media. To ensure proper calibration of the system, vector network analyzer (VNA) technology is used as the transmitter and receiver. An optimal integration path is proposed for fast evaluation of the spatial Green’s function from its spectral counterpart. We validated the antenna model in laboratory conditions with measurements performed with a loop antenna in free space and at different heights above a perfect electrical conductor. Provided that the loop antenna is high enough above the reflector (off-ground condition), the measured and modeled Green’s functions agreed remarkably well. In addition, inversion of the EMI data resulted in accurate estimates of the antenna heights. Yet, as expected, signal-to-noise-ratio issues occurred for the higher antenna heights and frequencies away from the loop resonant frequency. The method appears to be promising for accurate and robust soil characterization, but needs high VNA dynamic range and antenna gain.

2020 ◽  
Vol 62 (4) ◽  
pp. 216-221
Author(s):  
Haiyan Zhang ◽  
Mintao Shao ◽  
Guopeng Fan ◽  
Hui Zhang ◽  
Wenfa Zhu

A method combining Green's function retrieval theory and sign coherence factor (SCF) imaging is presented to detect near-surface defects in rails. The defects are close to the ultrasonic phased array and near-surface acoustic information of defects is obscured by the non-linear effects of the initial wave signal in directly acquired responses. To overcome this problem, cross-correlations of the diffuse field signals captured by the array transducer are performed to reconstruct the Green's function. SCF imaging is used to further improve the spatial resolution and signal-to-noise ratio (SNR) of near-surface defects in rails. Experiments are conducted on two rails containing two and four defects, respectively. The results show that these defects can be clearly identified when using the reconstructed Green's function. However, the images of near-surface defects are masked and cannot be distinguished when using directly captured signals and total focus imaging. The proposed method reduces the background noise and allows for effective imaging of near-surface defects in rails.


1994 ◽  
Vol 42 (12) ◽  
pp. 2302-2310 ◽  
Author(s):  
Le-Wei Li ◽  
Pang-Shyan Kooi ◽  
Mook-Seng Leong ◽  
Tat-Soon Yee

Sign in / Sign up

Export Citation Format

Share Document