Rock-physics modeling guided by depositional and burial history in low-to-intermediate-porosity sandstones

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. D115-D121 ◽  
Author(s):  
Per Avseth ◽  
Tor Arne Johansen ◽  
Aiman Bakhorji ◽  
Husam M. Mustafa

We present a new rock-physics modeling approach to describe the elastic properties of low-to-intermediate-porosity sandstones that incorporates the depositional and burial history of the rock. The studied rocks have been exposed to complex burial and diagenetic history and show great variability in rock texture and reservoir properties. Our approach combines granular medium contact theory with inclusion-based models to build rock-physics templates that take into account the complex burial history of the rock. These models are used to describe well log data from tight gas sandstone reservoirs in Saudi Arabia, and successfully explain the pore fluid, rock porosity, and pore shape trends in these complex reservoirs.

2020 ◽  
Vol 70 (1) ◽  
pp. 209-220
Author(s):  
Qazi Sohail Imran ◽  
◽  
Numair Ahmad Siddiqui ◽  
Abdul Halim Abdul Latif ◽  
Yasir Bashir ◽  
...  

Offshore petroleum systems are often very complex and subtle because of a variety of depositional environments. Characterizing a reservoir based on conventional seismic and well-log stratigraphic analysis in intricate settings often leads to uncertainties. Drilling risks, as well as associated subsurface uncertainties can be minimized by accurate reservoir delineation. Moreover, a forecast can also be made about production and performance of a reservoir. This study is aimed to design a workflow in reservoir characterization by integrating seismic inversion, petrophysics and rock physics tools. Firstly, to define litho facies, rock physics modeling was carried out through well log analysis separately for each facies. Next, the available subsurface information is incorporated in a Bayesian engine which outputs several simulations of elastic reservoir properties, as well as their probabilities that were used for post-inversion analysis. Vast areal coverage of seismic and sparse vertical well log data was integrated by geostatistical inversion to produce acoustic impedance realizations of high-resolution. Porosity models were built later using the 3D impedance model. Lastly, reservoir bodies were identified and cross plot analysis discriminated the lithology and fluid within the bodies successfully.


2018 ◽  
Vol 7 (3.32) ◽  
pp. 24 ◽  
Author(s):  
Amir Abbas Babasafari ◽  
Deva Ghosh ◽  
Ahmed M. A. Salim ◽  
S Y. Moussavi Alashloo

Shear velocity log is not measured at all wells in oil and gas fields, thus rock physics modeling plays an important role to predict this type of log. Therefore, seismic pre stack inversion is performed and elastic properties are estimated more accurately. Subsequently, a robust Petro-Elastic relationship arising from rock physics model leads to far more precise prediction of petrophysical properties. The more accurate rock physics modeling results in less uncertainty of reservoir modeling. Therefore, a valid rock physics model is intended to be built. For a better understanding of reservoir properties prediction, first of all rock physics modeling for each identified litho-facies classes should be performed separately through well log analysis.  


Sign in / Sign up

Export Citation Format

Share Document