gas field
Recently Published Documents


TOTAL DOCUMENTS

3911
(FIVE YEARS 1007)

H-INDEX

51
(FIVE YEARS 10)

Author(s):  
Pengda Cheng ◽  
Weijun Shen ◽  
Qingyan Xu ◽  
Xiaobing Lu ◽  
Chao Qian ◽  
...  

AbstractUnderstanding the changes of the near-wellbore pore pressure associated with the reservoir depletion is greatly significant for the development of ultra-deep natural gas reservoirs. However, there is still a great challenge for the fluid flow and geomechanics in the reservoir depletion. In this study, a fully coupled model was developed to simulate the near-wellbore and reservoir physics caused by pore pressure in ultra-deep natural gas reservoirs. The stress-dependent porosity and permeability models as well as geomechanics deformation induced by pore pressure were considered in this model, and the COMSOL Multiphysics was used to implement and solve the problem. The numerical model was validated by the reservoir depletion from Dabei gas field in China, and the effects of reservoir properties and production parameters on gas production, near-wellbore pore pressure and permeability evolution were discussed. The results show that the gas production rate increases nonlinearly with the increase in porosity, permeability and Young’s modulus. The lower reservoir porosity will result in the greater near-wellbore pore pressure and the larger rock deformation. The permeability changes have little effect on geomechanics deformation while it affects greatly the gas production rate in the reservoir depletion. With the increase in the gas production rate, the near-wellbore pore pressure and permeability decrease rapidly and tend to balance with time. The reservoir rocks with higher deformation capacity will cause the greater near-wellbore pore pressure.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 602
Author(s):  
Shiqi Liu ◽  
Yuyang Liu ◽  
Xiaowei Zhang ◽  
Wei Guo ◽  
Lixia Kang ◽  
...  

As an emerging unconventional energy resource, shale gas has great resource potential and developmental prospects. The effective evaluation of geological sweet spots (GSS), engineering sweet spots (ESS) and comprehensive sweet spots (CSS) is one of the main factors for a high-yield scale and economic production of shale gas. Sweet spot evaluation involves a comprehensive analysis based on multiple parameters. Conventional evaluation methods consider relatively simple or single factors. Although the main influencing factors are understood, the influence of different factors is as of yet unknown, and a comprehensive consideration may strongly affect the evaluation results. In this paper, the fuzzy mathematics method is introduced for shale gas sweet spot evaluation. With the help of fuzzy mathematics tools, such as membership function, the objective of comprehensive sweet spots evaluation based on multiple parameters is realized. Additionally, the reliability of the evaluation of sweet spots is improved. Firstly, previous research results are used for reference, and the evaluation factor system of geological and engineering sweet spots of shale gas is systematically analyzed and established. Then, the basic principle of the fuzzy comprehensive evaluation method is briefly introduced, and a geological engineering integrated shale gas sweet spots evaluation method, based on the fuzzy comprehensive evaluation method, is designed and implemented. Finally, the data from HB blocks in the Z shale gas field in China are adopted. According to the evaluation results, the modified method is tested. The results show that the method proposed in this paper can synthesize a number of evaluation indices, quickly and effectively evaluate the GSS, ESS and CSS in the target area, and the results have high rationality and accuracy, which can effectively assist in well-pattern deployment and fracture design.


2022 ◽  
Author(s):  
Dong Wang ◽  
Yifan Dong ◽  
Shengfang Yang ◽  
Joel Rignol ◽  
Qiang Wang ◽  
...  

Abstract Unlike many unconventional resources that demonstrate a high level of heterogeneity, conventional tight gas formations often perform consistently according to reservoir quality and the applied completion technology. Technical review over a long period may reveal the proper correlation between reservoir quality, completion technology, and well performance. For many parts of the world where conventional tight gas resources still dominate, the learnings from a review can be adapted to improve the performance of reservoirs with similar features. South Sulige Operating Company (SSOC), a joint venture between PetroChina and Total, has been operating in the Ordos basin for tight gas since 2011. The reservoir is known to have low porosity, low permeability, and low reservoir pressure, and requires multistage completion and fracturing to achieve economic production. Over the last 8 years, there has been a clear technical evolution in South Sulige field, as a better understanding of the reservoir, improvement of the completion deployment, optimized fracturing design, and upgraded flowback strategy have led to the continuous improvement of results in this field. Pad drilling of deviated boreholes, multistage completions with sliding sleeve systems, hybrid gel-fracturing, and immediate flowback practices, gradually proved to be the most effective way to deliver the reservoir's potential. Using the absolute open-flow (AOF) during testing phase for comparative assessment from South Sulige field, we can see that in 2012 this number was 126 thousand std m3/d in 2012, and by 2018 this number had increased to 304 thousand std m3/d, representing a 143% incremental increase. Thus, technical evolution has been proved to bring production improvement over time. Currently, South Sulige field not only outperforms offset blocks but also remains the top performer among the fields in the Ordos basin. The drilling and completion practices from SSOC may be well suited to similar reservoirs and fields in the future.


2022 ◽  
Vol 962 (1) ◽  
pp. 012022
Author(s):  
V A Kryukov ◽  
A N Tokarev

Abstract The authors have analyzed invention patents in the Russian oil and gas sector (OGS) based on a knowledge database complexity index they designed for this purpose. The index takes into account the subclasses and sections of international patent classification (IPC) used in the patents. It has been demonstrated that opportunities for creating breakthrough technologies and radical innovations mostly arise within giant multinational oil and gas field service companies (e.g. Halliburton, Schlumberger, Baker Hughes). At the same time, Russian oil and service companies are noticeably lagging behind the foreign players and Russian actors in the sphere of science and education. The conducted analysis of the sectoral knowledge database revealed several significant risks for the development of the Russian OGS along the innovative trajectory. The risks (relative to the invention patents) arise from inadequate opportunities for creating breakthrough technologies.


2022 ◽  
Vol 354 ◽  
pp. 00047
Author(s):  
Iulian Vladuca ◽  
Emilia Georgiana Prisăcariu ◽  
Cosmin Petru Suciu ◽  
Cristian Dobromirescu ◽  
Răzvan Edmond Nicoară

The oil free compressors were specially designed for air compression. The National Research and Development Institute for Gas Turbines COMOTI gained a great deal of experience in producing/designing certified oil injection screw compressors for the natural gas field and for several years it has been focusing its research on the use of “dry” (oil-free) compressors in natural gas compression and more recently in hydrogen compression. Working with an explosive gas, one of an idea was to use a nitrogen barrier in oil bearing sealing, which are open source of gases in the atmosphere for such compressors. Worldwide, on-site nitrogen generators have been developed for a purity range of 95…99.5%, and that nitrogen can be supplied in any environment conditions. The present paper will address nitrogen flow with low percentage of oxygen for bearing sealing at the working pressure, the nitrogen consumption, ideas for H2 re-injection and the influence over the global efficiency of the process. Due to the Energy Strategy worldwide, and the studies regarding production, transport and storage of hydrogen in natural gas network, COMOTI has involved researches in developing such possibilities and to express a point of view in existing research in the newly created industry.


2022 ◽  
pp. 191-215
Author(s):  
Xiuping Wang ◽  
Aiping Fan ◽  
A.J. (Tom) van Loon ◽  
Renchao Yang ◽  
Zuozhen Han ◽  
...  

2021 ◽  
Vol 54 (2F) ◽  
pp. 110-119
Author(s):  
Yasir Shyaa ◽  
Ali Al-Rahim

This research deals with structural interpretation of Khashim Al-Ahmer Gas Field North-Eastern Iraq in Diyala Province, using the interpretation of inhomogeneous velocity data. The specific target in this field is the gaseous Jeribe reservoir representing the L. Miocene-Tertiary period. A very thick layer of evaporates Al-Fatha Formation is overlap the Jeribe Formation in the gas field and play as a sealed bed and transition zone for faults movement as a thrust fault. The thrust fault with gas content negatively affected the seismic energy, causing a high attenuation below the level of Al-Fatha Formation in the dome of the Khashm Al-Ahmer structure. Using the interval velocities derived from the sonic logs of five surrounding wells that represent the inhomogeneous behavior of the seismic wave velocity within the rock layers, a model of the velocity behavior in the field was built and the extent of the Jeribe gas reservoir was reconstructed according to the new velocities interpretation data.


2021 ◽  
pp. 4769-4778
Author(s):  
Abdulkhaleq A. Alhadithi

     Akkas Field is a structural trap with a sandstone reservoir that contains proven gas condensate. The field is a faulted anticline that consists of the Ordovician Khabour Formation. The objective of this research is to use structural reservoir characterization for hydrocarbon recovery. The stratigraphic sequence of the Silurian and older strata was subjected to an uplift that developed a gentle NW-SE trending anticline. The uplifting and folding events developed micro-fractures represented by tension cracks.  These microfractures, whether they are outer arc or release fractures, are parallel to the hinge line of the anticline and perpendicular to the bedding planes. The brittle sandstone layers of the reservoir are interbedded with ductile units of shale. The sandstone layers accommodate the formation of micro fractures that play a major role to increase the secondary porosity. The gas and condensate have been stored mainly through the micro fractures. Two types of drilling have been used for experimental gas production, vertical and horizontal. Horizontal drilling was parallel to both hinge line of the anticline and micro fracture surfaces that was conducted and doubled the gas production of the vertical well multiple times. However, if used the third type of drilling, directional, that is perpendicular to the hinge line and parallel to the beddings of both flanks of the anticline gas production will increase more than the horizontal drilling. The directional drilling will become perpendicular to the fracture surfaces and allow the gas and the condensate to flow into the well from all directions. Additionally, it will reduce the effect of both semi – liquid hydrocarbon condensate and vertical sediment barriers.


Sign in / Sign up

Export Citation Format

Share Document