The requirements for the fire resistance of steel structures of oil and gas facilities for transportation and production of hydrocarbons are considered (structures of tankers and offshore platforms). It is found that the requirements for the values of fire resistance of structures under hydrocarbon rather than standard fire conditions are given only for offshore stationary platforms. Experimental studies on the loss of integrity (E) and thermal insulating capacity (I) of steel bulkheads and deck with mineral wool under standard and hydrocarbon fire regimes are presented. Simulation of structure heating was performed, which showed a good correlation with the experimental results (convective heat transfer coefficients for bulkheads of class H: 50 W/m2·K; for bulkheads of class A: 25 W/m2·K). The consumption of mineral slabs and endothermic mat for the H-0 bulkhead is predicted. It is calculated that under a standard fire regime, mineral wool with a density of 80–100 kg/m2 and a thickness of 40 to 85 mm should be used; under a hydrocarbon fire regime, mineral wool with a density above 100 kg/m2 and a thickness of 60–150 mm is required. It is shown that to protect the structures of decks and bulkheads in a hydrocarbon fire regime, it is necessary to use 30–40% more thermal insulation and apply the highest density of fire-retardant material compared to the standard fire regime. Parameters of thermal conductivity and heat capacity of the applied flame retardant in the temperature range from 0 to 1000 °C were clarified.