Reverse time migration of internal multiples for subsalt imaging

Geophysics ◽  
2015 ◽  
Vol 80 (5) ◽  
pp. S175-S185 ◽  
Author(s):  
Yike Liu ◽  
Hao Hu ◽  
Xiao-Bi Xie ◽  
Yingcai Zheng ◽  
Peng Li
Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB175-WB182 ◽  
Author(s):  
Yan Huang ◽  
Bing Bai ◽  
Haiyong Quan ◽  
Tony Huang ◽  
Sheng Xu ◽  
...  

The availability of wide-azimuth data and the use of reverse time migration (RTM) have dramatically increased the capabilities of imaging complex subsalt geology. With these improvements, the current obstacle for creating accurate subsalt images now lies in the velocity model. One of the challenges is to generate common image gathers that take full advantage of the additional information provided by wide-azimuth data and the additional accuracy provided by RTM for velocity model updating. A solution is to generate 3D angle domain common image gathers from RTM, which are indexed by subsurface reflection angle and subsurface azimuth angle. We apply these 3D angle gathers to subsalt tomography with the result that there were improvements in velocity updating with a wide-azimuth data set in the Gulf of Mexico.


2017 ◽  
Vol 5 (3) ◽  
pp. SN1-SN11 ◽  
Author(s):  
Chong Zeng ◽  
Shuqian Dong ◽  
Bin Wang

Least-squares reverse time migration (LSRTM) overcomes the shortcomings of conventional migration algorithms by iteratively fitting the demigrated synthetic data and the input data to refine the initial depth image toward true reflectivity. It gradually enhances the effective signals and removes the migration artifacts such as swing noise during conventional migration. When imaging the subsalt area with complex structures, many practical issues have to be considered to ensure the convergence of the inversion. We tackle those practical issues such as an unknown source wavelet, inaccurate migration velocity, and slow convergence to make LSRTM applicable to subsalt imaging in geologic complex areas such as the Gulf of Mexico. Dynamic warping is used to realign the modeled and input data to compensate for minor velocity errors in the subsalt sediments. A windowed crosscorrelation-based confidence level is used to control the quality of the residual computation. The confidence level is further used as an inverse weighting to precondition the data residual so that the convergence rates in shallow and deep images are automatically balanced. It also helps suppress the strong artifacts related to the salt boundary. The efficiency of the LSRTM is improved so that interpretable images in the area of interest can be obtained in only a few iterations. After removing the artifacts near the salt body using LSRTM, the image better represents the true geology than the outcome of conventional RTM; thus, it facilitates the interpretation. Synthetic and field data examples examine and demonstrate the effectiveness of the adaptive strategies.


Author(s):  
Chunpeng Zhao* ◽  
Olga Kroumova Zdraveva ◽  
Alfonso Gonzalez ◽  
Ryan King ◽  
Ruoyu Gu ◽  
...  

2015 ◽  
Author(s):  
Yike Liu* ◽  
Hao Hu ◽  
Xiao-Bi Xie ◽  
Yingcai Zheng

Geophysics ◽  
2021 ◽  
pp. 1-48
Author(s):  
Mikhail Davydenko ◽  
Eric Verschuur

Waveform inversion based on Least-Squares Reverse Time Migration (LSRTM) usually involves Born modelling, which models the primary-only data. As a result the inversion process handles only primaries and corresponding multiple elimination pre-processing of the input data is required prior to imaging and inversion. Otherwise, multiples left in the input data are mapped as false reflectors, also known as crosstalk, in the final image. At the same time the developed Full Wavefield Migration (FWM) methodology can handle internal multiples in an inversion-based imaging process. However, because it is based on the framework of the one-way wave equation, it cannot image dips close to and beyond 90 degrees. Therefore, we aim at upgrading LSRTM framework by bringing functionality of FWM to handle internal multiples. We have discovered that the secondary source term, used in the original formulation of FWM to define a wavefield relationship that allows to model multiple scattering via reflectivity, can be injected into a pressure component when simulating the two-way wave equation using finite-difference modelling. We use this modified forward model for estimating the reflectivity model with automatic crosstalk supression and validate the method on both synthetic and field data containing visible internal multiples.


Sign in / Sign up

Export Citation Format

Share Document