waveform inversion
Recently Published Documents


TOTAL DOCUMENTS

3588
(FIVE YEARS 1040)

H-INDEX

77
(FIVE YEARS 11)

Geophysics ◽  
2022 ◽  
pp. 1-51
Author(s):  
Peter Lanzarone ◽  
Xukai Shen ◽  
Andrew Brenders ◽  
Ganyuan Xia ◽  
Joe Dellinger ◽  
...  

We demonstrated the application of full-waveform inversion (FWI) guided velocity model building to an extended wide-azimuth towed streamer (EWATS) seismic data set in the Gulf of Mexico. Field data were collected over a historically challenging imaging area, colloquially called the “grunge zone” due to the formation of a compressional allosuture emplaced between two colliding salt sheets. These data had a poor subsalt image below the suture with conventional narrow-azimuth data. Additional geologic complexities were observed including high-velocity carbonate carapace near the top of salt and multiple intrasalt sedimentary inclusions. As such, improved seismic imaging was required to plan and execute wells targeting subsalt strata. Significant improvements to the velocity model and subsalt image were evident with wide-azimuth towed streamer and later EWATS data using conventional top-down velocity model building approaches. Then, high-impact improvements were made using EWATS data with an FWI velocity model building workflow; this study represented an early successful application of FWI used to update salt body geometries from streamer seismic data, in which many past applications were limited to improving sedimentary velocities. Later petrophysical data verified the new FWI-derived model, which had significantly increased confidence in the structural and stratigraphic interpretation of subsalt reservoir systems below the grunge zone.


2022 ◽  
Vol 9 ◽  
Author(s):  
Zhonghan Liu ◽  
Yingcai Zheng ◽  
Hua-Wei Zhou

To better interpret the subsurface structures and characterize the reservoir, a depth model quantifying P-wave velocity together with additional rock’s physical parameters such as density, the S-wave velocity, and anisotropy is always preferred by geologists and engineers. Tradeoffs among different parameters can bring extra challenges to the seismic inversion process. In this study, we propose and test the Direct Waveform Inversion (DWI) scheme to simultaneously invert for 1D layered velocity and density profiles, using reflection seismic waveforms recorded on the surface. The recorded data includes primary reflections and interbed multiples. DWI is implemented in the time-space domain then followed by a wavefield extrapolation to downward continue the source and receiver. By explicitly enforcing the wavefield time-space causality, DWI can recursively determine the subsurface seismic structure in a local layer-by-layer fashion for both sharp interfaces and the properties of the layers, from shallow to deep depths. DWI is different from the layer stripping methods in the frequency domain. By not requiring a global initial model, DWI also avoids many nonlinear optimization problems, such as the local minima or the need for an accurate initial model in most waveform inversion schemes. Two numerical tests show the validity of this DWI scheme serving as a new strategy for multi-parameter seismic inversion.


2022 ◽  
Vol 15 (1) ◽  
pp. 105-127
Author(s):  
Jingyuan Li ◽  
Qinghe Zhang ◽  
Tongqing Chen

Abstract. A numerical model, ISWFoam, for simulating internal solitary waves (ISWs) in continuously stratified, incompressible, viscous fluids is developed based on a fully three-dimensional (3D) Navier–Stokes equation using the open-source code OpenFOAM®. This model combines the density transport equation with the Reynolds-averaged Navier–Stokes equation with the Coriolis force, and the model discrete equation adopts the finite-volume method. The k–ω SST turbulence model has also been modified according to the variable density field. ISWFoam provides two initial wave generation methods to generate an ISW in continuously stratified fluids, including solving the weakly nonlinear models of the extended Korteweg–de Vries (eKdV) equation and the fully nonlinear models of the Dubreil–Jacotin–Long (DJL) equation. Grid independence tests for ISWFoam are performed, and considering the accuracy and computing efficiency, the appropriate grid size of the ISW simulation is recommended to be 1/150th of the characteristic length and 1/25th of the ISW amplitude. Model verifications are conducted through comparisons between the simulated and experimental data for ISW propagation examples over a flat bottom section, including laboratory scale and actual ocean scale, a submerged triangular ridge, a Gaussian ridge, and slope. The laboratory test results, including the ISW profile, wave breaking location, ISW arrival time, and the spatial and temporal changes in the mixture region, are well reproduced by ISWFoam. The ISWFoam model with unstructured grids and local mesh refinement can effectively simulate the evolution of ISWs, the ISW breaking phenomenon, waveform inversion of ISWs, and the interaction between ISWs and complex topography.


2022 ◽  
Vol 152 ◽  
pp. 107048
Author(s):  
Liu Liu ◽  
Zhenming Shi ◽  
Georgios P. Tsoflias ◽  
Ming Peng ◽  
Yao Wang

Author(s):  
Peng Zuo ◽  
Peter Huthwaite

Quantitative guided wave thickness mapping in plate-like structures and pipelines is of significant importance for the petrochemical industry to accurately estimate the minimum remaining wall thickness in the presence of corrosion, as guided waves can inspect a large area without needing direct access. Although a number of inverse algorithms have been studied and implemented in guided wave reconstruction, a primary assumption is widely used: the three-dimensional guided wave inversion of thickness is simplified as a two-dimensional acoustic wave inversion of velocity, with the dispersive nature of the waves linking thickness to velocity. This assumption considerably simplifies the inversion procedure; however, it makes it impossible to account for mode conversion. In reality, mode conversion is quite common in guided wave scattering with asymmetric wall loss, and compared with non-converted guided wave modes, converted modes may provide greater access to valuable information about the thickness variation, which, if exploited, could lead to improved performance. Geometrical full waveform inversion (GFWI) is an ideal tool for this, since it can account for mode conversion. In this paper, quantitative thickness reconstruction based on GFWI is developed in a plate cross-section and applied to study the performance of thickness reconstruction using mode conversion.


2022 ◽  
Vol 41 (1) ◽  
pp. 8-8
Author(s):  
Keith Millis ◽  
Guillaume Richard ◽  
Chengbo Li

In the life cycle of a seismic product, the lion's share of the budget and personnel hours is spent on acquisition. In most modern seismic surveys, acquisition involves hundreds of specialized personnel working for months or years. Seismic acquisition also must overcome potential liabilities and health, safety, and environmental concerns that rival facility, pipeline, construction, and other operational risks. As only properly acquired data can contribute effectively to processing and interpretation strategies, a great deal of importance is placed on acquisition quality. Arguably, many of the advances the seismic industry has experienced find their origin arising from advances in acquisition techniques. Full-waveform inversion (FWI), for example, can reach its full potential only when seismic acquisition has provided both low frequencies and long offsets.


2022 ◽  
Vol 41 (1) ◽  
pp. 34-39
Author(s):  
Vincent Durussel ◽  
Dongren Bai ◽  
Amin Baharvand Ahmadi ◽  
Scott Downie ◽  
Keith Millis

The depth of penetration and multidimensional characteristics of seismic waves make them an essential tool for subsurface exploration. However, their band-limited nature can make it difficult to integrate them with other types of ground measurements. Consequently, far offsets and very low-frequency components are key factors in maximizing the information jointly inverted from all recorded data. This explains why extending seismic bandwidth and available offsets has become a major industry focus. Although this requirement generally increases the complexity of acquisition and has an impact on its cost, improvements have been clearly and widely demonstrated on marine data. Onshore seismic data have generally followed the same trend but face different challenges, making it more difficult to maximize the benefits, especially for full-waveform inversion (FWI). This paper describes a new dense survey acquired in 2020 in the Permian Basin and aims to objectively assess the quality and benefits brought by a richer low end of the spectrum and far offsets. For this purpose, we considered several aspects, from acquisition design and field data to FWI imaging and quantitative interpretation.


Sign in / Sign up

Export Citation Format

Share Document