Application of deep learning in seismic data fault recognition

2018 ◽  
Author(s):  
Cao Liang
2021 ◽  
Author(s):  
Sergei Petrov ◽  
Tapan Mukerji ◽  
Xin Zhang ◽  
Xinfei Yan
Keyword(s):  

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 36
Author(s):  
Xiaoan Yan ◽  
Yadong Xu ◽  
Daoming She ◽  
Wan Zhang

Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common and key problem in existing deep learning models. Additionally, its anti-noise capability may face a decline when VAE is used to analyze bearing vibration data under loud environmental noise. Therefore, in order to improve the anti-noise performance of the VAE model and adaptively select its parameters, this paper proposes an optimized stacked variational denoising autoencoder (OSVDAE) for the reliable fault diagnosis of bearings. Within the proposed method, a robust network, named variational denoising auto-encoder (VDAE), is, first, designed by integrating VAE and a denoising auto-encoder (DAE). Subsequently, a stacked variational denoising auto-encoder (SVDAE) architecture is constructed to extract the robust and discriminative latent fault features via stacking VDAE networks layer on layer, wherein the important parameters of the SVDAE model are automatically determined by employing a novel meta-heuristic intelligent optimizer known as the seagull optimization algorithm (SOA). Finally, the extracted latent features are imported into a softmax classifier to obtain the results of fault recognition in rolling bearings. Experiments are conducted to validate the effectiveness of the proposed method. The results of analysis indicate that the proposed method not only can achieve a high identification accuracy for different bearing health conditions, but also outperforms some representative deep learning methods.


2020 ◽  
Author(s):  
Z. Gao ◽  
S. Hu ◽  
C. Li ◽  
H. Chen ◽  
J. Gao ◽  
...  

2019 ◽  
Vol 67 (8) ◽  
pp. 2115-2126 ◽  
Author(s):  
Timo Lähivaara ◽  
Alireza Malehmir ◽  
Antti Pasanen ◽  
Leo Kärkkäinen ◽  
Janne M.J. Huttunen ◽  
...  

2019 ◽  
Vol 38 (11) ◽  
pp. 872a1-872a9 ◽  
Author(s):  
Mauricio Araya-Polo ◽  
Stuart Farris ◽  
Manuel Florez

Exploration seismic data are heavily manipulated before human interpreters are able to extract meaningful information regarding subsurface structures. This manipulation adds modeling and human biases and is limited by methodological shortcomings. Alternatively, using seismic data directly is becoming possible thanks to deep learning (DL) techniques. A DL-based workflow is introduced that uses analog velocity models and realistic raw seismic waveforms as input and produces subsurface velocity models as output. When insufficient data are used for training, DL algorithms tend to overfit or fail. Gathering large amounts of labeled and standardized seismic data sets is not straightforward. This shortage of quality data is addressed by building a generative adversarial network (GAN) to augment the original training data set, which is then used by DL-driven seismic tomography as input. The DL tomographic operator predicts velocity models with high statistical and structural accuracy after being trained with GAN-generated velocity models. Beyond the field of exploration geophysics, the use of machine learning in earth science is challenged by the lack of labeled data or properly interpreted ground truth, since we seldom know what truly exists beneath the earth's surface. The unsupervised approach (using GANs to generate labeled data)illustrates a way to mitigate this problem and opens geology, geophysics, and planetary sciences to more DL applications.


Sign in / Sign up

Export Citation Format

Share Document