Deep Learning Applied to Seismic Data Interpolation

Author(s):  
A. Mikhailiuk ◽  
A. Faul
Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. WA115-WA136 ◽  
Author(s):  
Hao Zhang ◽  
Xiuyan Yang ◽  
Jianwei Ma

We have developed an interpolation method based on the denoising convolutional neural network (CNN) for seismic data. It provides a simple and efficient way to break through the problem of the scarcity of geophysical training labels that are often required by deep learning methods. This new method consists of two steps: (1) training a set of CNN denoisers to learn denoising from natural image noisy-clean pairs and (2) integrating the trained CNN denoisers into the project onto convex set (POCS) framework to perform seismic data interpolation. We call it the CNN-POCS method. This method alleviates the demands of seismic data that require shared similar features in the applications of end-to-end deep learning for seismic data interpolation. Additionally, the adopted method is flexible and applicable for different types of missing traces because the missing or down-sampling locations are not involved in the training step; thus, it is of a plug-and-play nature. These indicate the high generalizability of the proposed method and a reduction in the necessity of problem-specific training. The primary results of synthetic and field data show promising interpolation performances of the adopted CNN-POCS method in terms of the signal-to-noise ratio, dealiasing, and weak-feature reconstruction, in comparison with the traditional [Formula: see text]-[Formula: see text] prediction filtering, curvelet transform, and block-matching 3D filtering methods.


Author(s):  
B.F. Wang ◽  
N. Zhang ◽  
W.K. Lu ◽  
P. Zhang ◽  
J.H. Geng

Geophysics ◽  
2021 ◽  
pp. 1-63
Author(s):  
Wenqian Fang ◽  
Lihua Fu ◽  
Shaoyong Liu ◽  
Hongwei Li

Deep learning (DL) technology has emerged as a new approach for seismic data interpolation. DL-based methods can automatically learn the mapping between regularly subsampled and complete data from a large training dataset. Subsequently, the trained network can be used to directly interpolate new data. Therefore, compared with traditional methods, DL-based methods reduce the manual workload and render the interpolation process efficient and automatic by avoiding the selection of hyperparameters. However, two limitations of DL-based approaches exist. First, the generalization performance of the neural network is inadequate when processing new data with a different structure compared to the training data. Second, the interpretation of the trained networks is very difficult. To overcome these limitations, we combine the deep neural network and classic prediction-error filter methods, proposing a novel seismic data de-aliased interpolation framework termed PEFNet (Prediction-Error Filters Network). The PEFNet designs convolutional neural networks to learn the relationship between the subsampled data and the prediction-error filters. Thus, the filters estimated by the trained network are used for the recovery of missing traces. The learning of filters enables the network to better extract the local dip of seismic data and has a good generalization ability. In addition, PEFNet has the same interpretability as traditional prediction error-filter based methods. The applicability and the effectiveness of the proposed method are demonstrated here by synthetic and field data examples.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. V11-V20 ◽  
Author(s):  
Benfeng Wang ◽  
Ning Zhang ◽  
Wenkai Lu ◽  
Jialin Wang

Seismic data interpolation is a longstanding issue. Most current methods are only suitable for randomly missing cases. To deal with regularly missing cases, an antialiasing strategy should be included. However, seismic survey design using a random distribution of shots and receivers is always operationally challenging and impractical. We have used deep-learning-based approaches for seismic data antialiasing interpolation, which could extract deeper features of the training data in a nonlinear way by self-learning. It can also avoid linear events, sparsity, and low-rank assumptions of the traditional interpolation methods. Based on convolutional neural networks, eight-layers residual learning networks (ResNets) with a better back-propagation property for deep layers is designed for interpolation. Detailed training analysis is also performed. A set of simulated data is used to train the designed ResNets. The performance is assessed with several synthetic and field data. Numerical examples indicate that the trained ResNets can help to reconstruct regularly missing traces with high accuracy. The interpolated results in the time-space domain and the frequency-wavenumber ([Formula: see text]-[Formula: see text]) domain demonstrate the validity of the trained ResNets. Even though the accuracy decreases with the increase of the feature difference between the test and training data, the proposed method can still provide reasonable interpolation results. Finally, the trained ResNets is used to reconstruct dense data with halved trace intervals for synthetic and field data. The reconstructed dense data are more continuous along the spatial direction, and the spatial aliasing effects disappear in the [Formula: see text]-[Formula: see text] domain. The reconstructed dense data have the potential to improve the accuracy of subsequent seismic data processing and inversion.


2020 ◽  
Vol 1631 ◽  
pp. 012110
Author(s):  
Xiaoguo Xie ◽  
Shuling Pan ◽  
Bing Luo ◽  
Cailing Chen ◽  
Kai Chen

2021 ◽  
Author(s):  
Sergei Petrov ◽  
Tapan Mukerji ◽  
Xin Zhang ◽  
Xinfei Yan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document