data reconstruction
Recently Published Documents


TOTAL DOCUMENTS

602
(FIVE YEARS 201)

H-INDEX

28
(FIVE YEARS 6)

2021 ◽  
Vol 11 (3-4) ◽  
pp. 1-34
Author(s):  
Yu Zhang ◽  
Bob Coecke ◽  
Min Chen

In many applications, while machine learning (ML) can be used to derive algorithmic models to aid decision processes, it is often difficult to learn a precise model when the number of similar data points is limited. One example of such applications is data reconstruction from historical visualizations, many of which encode precious data, but their numerical records are lost. On the one hand, there is not enough similar data for training an ML model. On the other hand, manual reconstruction of the data is both tedious and arduous. Hence, a desirable approach is to train an ML model dynamically using interactive classification, and hopefully, after some training, the model can complete the data reconstruction tasks with less human interference. For this approach to be effective, the number of annotated data objects used for training the ML model should be as small as possible, while the number of data objects to be reconstructed automatically should be as large as possible. In this article, we present a novel technique for the machine to initiate intelligent interactions to reduce the user’s interaction cost in interactive classification tasks. The technique of machine-initiated intelligent interaction (MI3) builds on a generic framework featuring active sampling and default labeling. To demonstrate the MI3 approach, we use the well-known cholera map visualization by John Snow as an example, as it features three instances of MI3 pipelines. The experiment has confirmed the merits of the MI3 approach.


2021 ◽  
Vol 14 (1) ◽  
pp. 172
Author(s):  
Zhipeng Tang ◽  
Giuseppe Amatulli ◽  
Petri K. E. Pellikka ◽  
Janne Heiskanen

The number of Landsat time-series applications has grown substantially because of its approximately 50-year history and relatively high spatial resolution for observing long term changes in the Earth’s surface. However, missing observations (i.e., gaps) caused by clouds and cloud shadows, orbit and sensing geometry, and sensor issues have broadly limited the development of Landsat time-series applications. Due to the large area and temporal and spatial irregularity of time-series gaps, it is difficult to find an efficient and highly precise method to fill them. The Missing Observation Prediction based on Spectral-Temporal Metrics (MOPSTM) method has been proposed and delivered good performance in filling large-area gaps of single-date Landsat images. However, it can be less practical for a time series longer than one year due to the lack of mechanics that exclude dissimilar data in time series (e.g., different phenology or changes in land cover). To solve this problem, this study proposes a new gap-filling method, Spectral Temporal Information for Missing Data Reconstruction (STIMDR), and examines its performance in Landsat reflectance time series. Two groups of experiments, including 2000 × 2000 pixel Landsat single-date images and Landsat time series acquired from four sites (Kenya, Finland, Germany, and China), were performed to test the new method. We simulated artificial gaps to evaluate predicted pixel values with real observations. Quantitative and qualitative evaluations of gap-filled images through comparisons with other state-of-the-art methods confirmed the more robust and accurate performance of the proposed method. In addition, the proposed method was also able to fill gaps contaminated by extreme cloud cover for a period (e.g., winter in high-latitude areas). A down-stream task of random forest supervised classification through both gap-filled simulated datasets and the original valid datasets verified that STIMDR-generated products are relevant to the user community for land cover applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Luo Xuegang ◽  
Lv Junrui ◽  
Wang Juan

An effective fraction of data with missing values from various physiochemical sensors in the Internet of Things is still emerging owing to unreliable links and accidental damage. This phenomenon will limit the predicative ability and performance for supporting data analyses by IoT-based platforms. Therefore, it is necessary to exploit a way to reconstruct these lost data with high accuracy. A new data reconstruction method based on spectral k-support norm minimization (DR-SKSNM) is proposed for NB-IoT data, and a relative density-based clustering algorithm is embedded into model processing for improving the accuracy of reconstruction. First, sensors are grouped by similar patterns of measurement. A relative density-based clustering, which can effectively identify clusters in data sets with different densities, is applied to separate sensors into different groups. Second, based on the correlations of sensor data and its joint low rank, an algorithm based on the matrix spectral k-support norm minimization with automatic weight is developed. Moreover, the alternating direction method of multipliers (ADMM) is used to obtain its optimal solution. Finally, the proposed method is evaluated by using two simulated and real sensor data sources from Panzhihua environmental monitoring station with random missing patterns and consecutive missing patterns. From the simulation results, it is proved that our algorithm performs well, and it can propagate through low-rank characteristics to estimate a large missing region’s value.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3148
Author(s):  
Chih-Sung Chen ◽  
Yih Jeng

Although ground-penetrating radar (GPR) is effective to detect shallow-buried objects, it still needs more effort for the application to investigate a buried water utility infrastructure. Edge detection is a well-known image processing technique that may improve the resolution of GPR images. In this study, we briefly review the theory of edge detection and discuss several popular edge detectors as examples, and then apply an enhanced edge detecting method to GPR data processing. This method integrates the multidimensional ensemble empirical mode decomposition (MDEEMD) algorithm into standard edge detecting filters. MDEEMD is implemented mainly for data reconstruction to increase the signal-to-noise ratio before edge detecting. A quantitative marginal spectrum analysis is employed to support the data reconstruction and facilitate the final data interpretation. The results of the numerical model study followed by a field example suggest that the MDEEMD edge detector is a competent method for processing and interpreting GPR data of a buried hot spring well, which cannot be efficiently handled by conventional techniques. Moreover, the proposed method should be readily considered a vital tool for processing other kinds of buried water utility infrastructures.


2021 ◽  
Vol 2122 (1) ◽  
pp. 012007
Author(s):  
Vivek Dixit ◽  
Yaroslav Koshka ◽  
Tamer Aldwairi ◽  
M.A. Novotny

Abstract Classification and data reconstruction using a restricted Boltzmann machine (RBM) is presented. RBM is an energy-based model which assigns low energy values to the configurations of interest. It is a generative model, once trained it can be used to produce samples from the target distribution. The D-Wave 2000Q is a quantum computer which has been used to exploit its quantum effect for machine learning. Bars-and-stripes (BAS) and cybersecurity (ISCX) datasets were used to train RBMs. The weights and biases of trained RBMs were used to map onto the D-Wave. Classification as well as image reconstruction were performed. Classification accuracy of both datasets indicates comparable performance using D-Wave’s adiabatic annealing and classical Gibb’s sampling.


Sign in / Sign up

Export Citation Format

Share Document