Rock physics guided velocity modeling and reverse-time migration for subsalt pore pressure prediction: Study in Green Canyon, Deep water Gulf of Mexico

Author(s):  
Bhaskar Deo* ◽  
Krishna Ramani ◽  
Nader Dutta ◽  
Jianchun Dai ◽  
Chuck Peng
Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB79-WB86 ◽  
Author(s):  
Xuening Ma ◽  
Bin Wang ◽  
Cristina Reta-Tang ◽  
Wilfred Whiteside ◽  
Zhiming Li

We present a case study of enhanced imaging of wide-azimuth data from the Gulf of Mexico utilizing recent technologies; and we discuss the resulting improvements in image quality, especially in subsalt areas, relative to previous results. The input seismic data sets are taken from many large-scale wide-azimuth surveys and conventional narrow-azimuth surveys located in the Mississippi Canyon and Atwater Valley areas. In the course of developing the enhanced wide azimuth processing flow, the following three key steps are found to have the most impact on improving subsalt imaging: (1) 3D true azimuth surface-related multiple elimination (SRME) to remove multiple energy, in particular, complex multiples beneath salt; (2) reverse-time migration (RTM) based delayed imaging time (DIT) scans to update the complex subsalt velocity model; and (3) tilted transverse isotropic (TTI) RTM to improve image quality. Our research focuses on the depth imaging aspects of the project, with particular emphasis on the application of the DIT scanning technique. The DIT-scan technique further improves the accuracy of the subsalt velocity model after conventional ray-based subsalt tomography has been performed. We also demonstrate the uplift obtained by acquiring a wide-azimuth data set relative to a standard narrow-azimuth data set, and how orthogonal wide-azimuth is able to enhance the subsalt illumination.


2020 ◽  
Author(s):  
Mandy Wong ◽  
Michael Kiehn ◽  
Eric Duveneck ◽  
Jason McCrank ◽  
Vicente Oropeza Bacci ◽  
...  

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB119-WB126 ◽  
Author(s):  
Elive Menyoli ◽  
Shengwen Jin ◽  
Shiyong Xu ◽  
Stuart Graber

Marine wide-azimuth data in the Gulf of Mexico, reverse time migration (RTM) and anisotropic velocity models have led to significant improvement in subsalt imaging. However, imaging of some steeply dipping subsalt targets such as three-way closures against salt is still difficult. This can be attributed to poor illumination and noise contaminations from various shot records. We apply the visibility analysis method that quantitatively determines which shot records contribute most energy on a specific subsalt prospect area. As a result we selectively migrate only those shot records thereby reducing noise contamination from low energy contributing shot records, improving signal continuity and better trap definition in the target area. Like conventional illumination analysis, the computation takes into account the overburden velocity distribution, acquisition geometry, target reflectivity and dip angle. We used 2D and 3D synthetic data examples to test the concepts and applicability of the method. A Gulf of Mexico case study example using wide-azimuth data demonstrated its use in an industry scale project. It is shown that for the particular 60°–65° subsalt target of interest only 30% of the wide-azimuth shot records are sufficient for the imaging. By reducing noise, the image results show significant improvement in the subsalt area compared to the full shot record RTM volume.


2008 ◽  
Author(s):  
Jacques Leveille ◽  
Steve Checkles ◽  
John Graves ◽  
Santi Randazzo ◽  
Paul Farmer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document