Visibility analysis for optimal imaging of target areas and its application to a Gulf of Mexico deep-water data set

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB119-WB126 ◽  
Author(s):  
Elive Menyoli ◽  
Shengwen Jin ◽  
Shiyong Xu ◽  
Stuart Graber

Marine wide-azimuth data in the Gulf of Mexico, reverse time migration (RTM) and anisotropic velocity models have led to significant improvement in subsalt imaging. However, imaging of some steeply dipping subsalt targets such as three-way closures against salt is still difficult. This can be attributed to poor illumination and noise contaminations from various shot records. We apply the visibility analysis method that quantitatively determines which shot records contribute most energy on a specific subsalt prospect area. As a result we selectively migrate only those shot records thereby reducing noise contamination from low energy contributing shot records, improving signal continuity and better trap definition in the target area. Like conventional illumination analysis, the computation takes into account the overburden velocity distribution, acquisition geometry, target reflectivity and dip angle. We used 2D and 3D synthetic data examples to test the concepts and applicability of the method. A Gulf of Mexico case study example using wide-azimuth data demonstrated its use in an industry scale project. It is shown that for the particular 60°–65° subsalt target of interest only 30% of the wide-azimuth shot records are sufficient for the imaging. By reducing noise, the image results show significant improvement in the subsalt area compared to the full shot record RTM volume.

Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA141-WCA151 ◽  
Author(s):  
Shuqian Dong ◽  
Yi Luo ◽  
Xiang Xiao ◽  
Sergio Chávez-Pérez ◽  
Gerard T. Schuster

Imaging of subsalt sediments is a challenge for traditional migration methods such as Kirchhoff and one-way wave-equation migration. Consequently, the more accurate two-way method of reverse-time migration (RTM) is preferred for subsalt imaging, but its use can be limited by high computation cost. To overcome this problem, a 3D target-oriented reverse-time datuming (RTD) method is presented, which can generate redatumed data economically in target areas beneath complex structures such as salt domes. The redatumed data in the target area then can be migrated inexpensively using a traditional migration method. If the target area is much smaller than the acquisition area, computation costs are reduced significantly by the use of a novel bottom-up strategy to calculate the extrapolated Green’s functions. Target-oriented RTD is tested on 2D and 3D SEG/EAGE synthetic data sets and a 3D field data set from the Gulf of Mexico. Results show that target-oriented RTD combined with standard migration can image sediments beneath complex structures accurately with much less calculation effort than full volume RTM. The requirement is that the area over the target zone is smaller than that of the acquisition survey.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB169-WB174 ◽  
Author(s):  
Shuo Ji ◽  
Tony Huang ◽  
Kang Fu ◽  
Zhengxue Li

For deep-water Gulf of Mexico, accurate salt geometry is critical to subsalt imaging. This requires the definition of both external and internal salt geometries. In recent years, external salt geometry (i.e., boundaries between allochthonous salt and background sediment) has improved a great deal due to advances in acquisition, velocity model building, and migration algorithms. But when it comes to defining internal salt geometry (i.e., intrasalt inclusions or dirty salt), no efficient method has yet been developed. In common industry practices, intrasalt inclusions (and thus their velocity anomalies) are generally ignored during the model building stages. However, as external salt geometries reach higher levels of accuracy, it becomes more important to consider the once-ignored effects of dirty salt. We have developed a reflectivity-based approach for dirty salt velocity inversion. This method takes true-amplitude reverse time migration stack volumes as input, then estimates the dirty salt velocity based on reflectivity under a 1D assumption. Results from a 2D synthetic data set and a real 3D Wide Azimuth data set demonstrated that the reflectivity inversion scheme significantly improves the subsalt image for certain areas. In general, we believe that this method produces a better salt model than the traditional clean salt velocity approach.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB175-WB182 ◽  
Author(s):  
Yan Huang ◽  
Bing Bai ◽  
Haiyong Quan ◽  
Tony Huang ◽  
Sheng Xu ◽  
...  

The availability of wide-azimuth data and the use of reverse time migration (RTM) have dramatically increased the capabilities of imaging complex subsalt geology. With these improvements, the current obstacle for creating accurate subsalt images now lies in the velocity model. One of the challenges is to generate common image gathers that take full advantage of the additional information provided by wide-azimuth data and the additional accuracy provided by RTM for velocity model updating. A solution is to generate 3D angle domain common image gathers from RTM, which are indexed by subsurface reflection angle and subsurface azimuth angle. We apply these 3D angle gathers to subsalt tomography with the result that there were improvements in velocity updating with a wide-azimuth data set in the Gulf of Mexico.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. T167-T174 ◽  
Author(s):  
Dan Kosloff ◽  
Reynam C. Pestana ◽  
Hillel Tal-Ezer

A new scheme for the calculation of spatial derivatives has been developed. The technique is based on recursive derivative operators that are generated by an [Formula: see text] fit in the spectral domain. The use of recursive operators enables us to extend acoustic and elastic wave simulations to shorter wavelengths. The method is applied to the numerical solution of the 2D acoustic wave equation and to the solution of the equations of 2D dynamic elasticity in an isotropic medium. An example of reverse-time migration of a synthetic data set shows that the numerical dispersion can be significantly reduced with respect to schemes that are based on finite differences. The method is tested for the solutions of the equations of dynamic elasticity by comparing numerical and analytic solutions to Lamb’s problem.


Author(s):  
Chunpeng Zhao* ◽  
Olga Kroumova Zdraveva ◽  
Alfonso Gonzalez ◽  
Ryan King ◽  
Ruoyu Gu ◽  
...  

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB209-WB216 ◽  
Author(s):  
Yike Liu ◽  
Xu Chang ◽  
Degang Jin ◽  
Ruiqing He ◽  
Hongchuan Sun ◽  
...  

Some hydrocarbon reservoirs are trapped beneath salt bodies, where seismic imaging is greatly challenged due to poor illumination. Multiple reflections have different propagation wave paths from primary reflections and thus can be used to complement the illuminations where primary reflections from beneath the salt are not acquired. Consequently, migration of multiples can sometimes provide better subsalt images compared to conventional migration which uses primary reflections only. In this paper, we propose to modify conventional reverse time migration so that multiples can be used as constructive reflection energy for subsalt imaging. This new approach replaces the impulsive source wavelet with the recorded data containing both primaries and multiples and uses predicted multiples as the input data instead of primary reflections. In the reverse time migration process, multiples recorded on the surface are extrapolated backward in time to each depth level, and the observed data with both primaries and multiples are extrapolated forward in time to the same depth levels, followed by a crosscorrelation imaging condition. A numerical test on the Sigsbee2B data set shows that a wider coverage and a more balanced illumination of the subsurface can be achieved by migration of multiples compared with conventional migration of primary reflections. This example demonstrates that reverse time migration of multiples might be a promising method for complex subsalt imaging.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. S307-S314 ◽  
Author(s):  
Yibo Wang ◽  
Yikang Zheng ◽  
Qingfeng Xue ◽  
Xu Chang ◽  
Tong W. Fei ◽  
...  

In the implementation of migration of multiples, reverse time migration (RTM) is superior to other migration algorithms because it can handle steeply dipping structures and offer high-resolution images of the complex subsurface. However, the RTM results using two-way wave equation contain high-amplitude, low-frequency noise and false images generated by improper wave paths in migration velocity model with sharp velocity interfaces or strong velocity gradients. To improve the imaging quality in RTM of multiples, we separate the upgoing and downgoing waves in the propagation of source and receiver wavefields. A complex function involved with the Hilbert transform is used in wavefield decomposition. Our approach is cost effective and avoids the large storage of wavefield snapshots required by the conventional wavefield separation technique. We applied migration of multiples with wavefield decomposition on a simple two-layer model and the Sigsbee 2B synthetic data set. Our results demonstrate that the proposed approach can improve the image generated by migration of multiples significantly.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB79-WB86 ◽  
Author(s):  
Xuening Ma ◽  
Bin Wang ◽  
Cristina Reta-Tang ◽  
Wilfred Whiteside ◽  
Zhiming Li

We present a case study of enhanced imaging of wide-azimuth data from the Gulf of Mexico utilizing recent technologies; and we discuss the resulting improvements in image quality, especially in subsalt areas, relative to previous results. The input seismic data sets are taken from many large-scale wide-azimuth surveys and conventional narrow-azimuth surveys located in the Mississippi Canyon and Atwater Valley areas. In the course of developing the enhanced wide azimuth processing flow, the following three key steps are found to have the most impact on improving subsalt imaging: (1) 3D true azimuth surface-related multiple elimination (SRME) to remove multiple energy, in particular, complex multiples beneath salt; (2) reverse-time migration (RTM) based delayed imaging time (DIT) scans to update the complex subsalt velocity model; and (3) tilted transverse isotropic (TTI) RTM to improve image quality. Our research focuses on the depth imaging aspects of the project, with particular emphasis on the application of the DIT scanning technique. The DIT-scan technique further improves the accuracy of the subsalt velocity model after conventional ray-based subsalt tomography has been performed. We also demonstrate the uplift obtained by acquiring a wide-azimuth data set relative to a standard narrow-azimuth data set, and how orthogonal wide-azimuth is able to enhance the subsalt illumination.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. S263-S270 ◽  
Author(s):  
Yibo Wang ◽  
Yikang Zheng ◽  
Lele Zhang ◽  
Xu Chang ◽  
Zhenxing Yao

Free-surface-related multiples are usually regarded as noise in conventional seismic processing. However, they can provide extra illumination of the subsurface and thus have been used in migration procedures, e.g., in one- and two-way wave-equation migrations. The disadvantage of the migration of multiples is the migration artifacts generated by the crosscorrelation of different seismic events, e.g., primaries and second-order free-surface-related multiples, so the effective elimination of migration artifacts is crucial for migration of multiples. The angle domain common image gather (ADCIG) is a suitable domain for testing the correctness of a migration velocity model. When the migration velocity model is correct, all the events in ADCIGs should be flat, and this provides a criterion for removing the migration artifacts. Our approach first obtains ADCIGs during reverse time migration and then applies a high-resolution parabolic Radon transform to all ADCIGs. By doing so, most migration artifacts will reside in the nonzero curvature regions in the Radon domain, and then a muting procedure can be implemented to remove the data components outside the vicinity of zero curvature. After the application of an adjoint Radon transform, the filtered ADCIGs are obtained and the final denoised migration result is generated by stacking all filtered ADCIGs. A three-flat-layer velocity model and the Marmousi synthetic data set are used for numerical experiments. The numerical results revealed that the proposed approach can eliminate most artifacts generated by migration of multiples when the migration velocity model is correct.


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. S111-S119 ◽  
Author(s):  
Hervé Chauris ◽  
Mondher Benjemaa

Reverse-time migration is a well-known method based on a single-scattering approximation; it is designed to obtain seismic images in the case of a complex subsurface. It can, however, be a very time-consuming task because the number of computations is directly proportional to the number of processed sources. In the context of velocity model-building, iterative approaches require that one derives a series of migrated sections for different velocity models. We propose to replace the summation over sources by a summation over depth offsets or time delays defined in the subsurface. For that, we have developed a new relationship between two migrated sections obtained for two different velocity models. Starting from one of the two images, we obtain a second section correctly and efficiently. For each time delay, we compute a generalized source term by extending the concept of exploding reflector to nonzero offset. We obtain the final migrated section by solving the same wave equation in the perturbed model with the modified source term. Our work included testing the methodology on 2D synthetic data sets, particularly when the initial and perturbed velocity models differ greatly.


Sign in / Sign up

Export Citation Format

Share Document