Deep-water sedimentary bedforms in a mobile substrate terrain: examples from the central Gulf of Mexico basin

2021 ◽  
pp. 1-49
Author(s):  
Maria I. Prieto ◽  
Lorena Moscardelli ◽  
Lesli Wood

We have used high-resolution geophysical data to investigate depositional and erosional bedforms in two geomorphologic provinces of the deepwater central Gulf of Mexico Basin: (1) the Mad Dog and Atlantis areas in the Sigsbee Escarpment region and (2) the Holstein minibasin within the salt canopy in the slope. Multibeam bathymetry indicates that the seafloor relief in the study areas is highly irregular because it is influenced by the dynamic behavior of underlying salt bodies resulting in the development of diverse bathymetric features. Side-scan images reveal erosional furrows of different morphologies at the base of the Sigsbee Escarpment that are oriented subparallel to the escarpment. Wide and sinuous furrows overlie mass transport deposits (MTDs), whereas, in other areas along strike, narrow rectilinear furrows are found beneath MTDs. The furrow fields in the Sigsbee Escarpment are located within a large series of erosional features that are linked to the action of westward flowing bottom currents associated with topographic Rossby waves that manage to rework sediments at water depths up to 2000 m. The interaction between the bottom current flow and the seafloor is likely influenced by the MTD’s irregular top surface relief and lateral changes in the escarpment’s morphology resulting in the development of complex sinuous furrow morphologies. North of the escarpment, subbottom profiles indicate a series of buried sediment waves found in the southern rim of the Holstein minibasin. Sediment wave morphometry indicates wavelengths ranging from 116 to 339 m and wave heights between approximately 0.8 and 2.4 m. Sediment waves were likely formed by turbidity currents as they exited the minibasin. The vertical change in topographic relief from the minibasin to the salt high led to variations in flow thickness and flow velocity of turbidity currents passing over the minibasin’s open rim. Consequently, these changes in flow regime led to the formation of sediment waves.

2013 ◽  
Vol 1 (1) ◽  
pp. SA75-SA91 ◽  
Author(s):  
Dallas B. Dunlap ◽  
Lesli J. Wood ◽  
Lorena G. Moscardelli

The lower continental rise of Morocco’s Atlantic Margin contains three varying morphologies of buried deepwater sediment waves. The 3D mapping of a [Formula: see text] seismic survey acquired in the Safi Haute Mer seismic block revealed numerous linear features that range from small, less than 17-m-thick Jurassic-age amplitude striations up to 110-m-thick migrating Cretaceous contourite sediment waves. Early proto-Atlantic deposition in Safi Haute Mer initiated in the Triassic, with syn- and postrift accumulation in basement half-grabens basinward of the modern Moroccan salt front. Sedimentation continued through the Mesozoic with deposition of turbidites, progradation of clinoforms, and culminating in multiple Late Cretaceous, regionally expansive, mass-transport deposits ([Formula: see text]). Tertiary stratigraphy consists of multiple thin, pelagic drapes and unconformities. The complex history of sedimentation and tectonics gave rise to three styles of sediment waves found within the study area: (1) type J1 — small and poorly imaged, Jurassic age, locally generated wave forms that have wavelengths of up to 12 km and crest-to-crest separations of less than 1 km with little or no vertical expression; (2) type K1 — early Aptian constructional sediment waves ([Formula: see text] thick) built by contour currents that traveled in and near a contourite moat at the base of a seafloor high produced by shallowly buried mobile salt; and (3) type K2 — latest Albian and earliest post-Albian sediment waves built by along-slope currents on a relatively stable slope, showing evidence of updip migration. The type K2 sediment wavefield exhibits wave heights of 40 m and crest-to-crest separations of 1 km, and it is continuous over the entire study area.


2006 ◽  
Vol 14 (6) ◽  
pp. 859-867 ◽  
Author(s):  
Alan R. Dutton ◽  
Jean-Philippe Nicot ◽  
Katherine S. Kier

Sign in / Sign up

Export Citation Format

Share Document