Horizontal Hydraulic Fracture Design for Optimal Well Productivity in Anisotropic Reservoirs with Different Aspect Ratios

2013 ◽  
Author(s):  
Francisco D. Tovar ◽  
Kyung Jae Lee ◽  
Sergio E. Gonzales ◽  
Yun Suk Hwang ◽  
Andres M. Del Busto ◽  
...  
2021 ◽  
Author(s):  
Evgeniy Viktorovich Yudin ◽  
George Aleksandrovich Piotrovskiy ◽  
Maria Vladimirovna Petrova ◽  
Alexey Petrovich Roshchektaev ◽  
Nikita Vladislavovich Shtrobel

Abstract Requirements of targeted optimization are imposed on the hydraulic fracturing operations carried out in the conditions of borderline economic efficiency of fields taking into account geological and technological features. Consequently, the development of new analytical tools foranalyzing and planning the productivity of fractured wells, taking into account the structuralfeatures of the productive reservoir and inhomogeneous distribution of the fracture conductivity, is becoming highly relevant. The paper proposes a new approach of assessing the vertical hydraulic fracture productivityin a rectangular reservoir in a pseudo-steady state, based on reservoir resistivity concept described in the papers of Meyer et al. However, there is a free parameter in the case of modeling the productivity of a hydraulic fracture by the concept. The parameter describes the distribution of the inflow along the plane of the fracture. This paper presents a systematic approach to determining of the parameter. The resulting model allows to conduct an assessment of the influence of various complications in the fracture on the productivity index. During the research a method of determining the free parameter was developed,it was based on the obtained dependence of the inflow distribution on the coordinate along the fracture of finite conductivity. The methodology allowed to refine existent analytical solution of the Meyer et al. model, which, in turn, allowed to assess the influence of different fracture damages in the hydraulic fracture on the productivity index of the well. The work includes the cases of the presence of fracture damages at the beginning and at the end of the fracture. A hydraulic fracture model was built for each of the types of damages, it was based on the developed method, and also the solution of dimensionless productivity ratio was received. The results of the obtained solution were confirmed by comparison with the numerical solutions of commercial simulators and analytical models available in the literature. The advantage of the methodology is the resulting formulas for well productivity are relatively simple, even for exotic cases ofvariable conductivity fractures. The approaches and algorithms described in the paper assume the calculation of the productivity of a hydraulic fracture with variable conductivity and the presence of other complicatingfactors.The methodology of the paper can be used for analysis and diagnosis problems with formation hydraulic fracturing. The efficiency of the calculations allows using the presented methodology to solve inverse problems of determining the efficiency of the hydraulic fracturing operation.


2007 ◽  
Author(s):  
Bart Vos ◽  
Cornelis J. de Pater ◽  
Christopher C. Cook ◽  
Tommy Skjerven ◽  
Rene Frederiksen ◽  
...  

2021 ◽  
Author(s):  
Nguyen Dung ◽  
Cramer David ◽  
Danielson Tom ◽  
Snyder Jon ◽  
Roussel Nico ◽  
...  

Abstract Water hammer is oscillatory pressure behavior in a wellbore resulting from the inertial effect of flowing fluid being subjected to an abrupt change in velocity. It is commonly observed at the end of large-scale hydraulic fracturing treatments after fluid injection rate is rapidly reduced or terminated. In this paper, factors affecting treatment-related water hammer behavior are disclosed, and field studies are introduced correlating water hammer characteristics to fracture intensity and well productivity. A simulator based on fundamental fluid-mechanics concepts was developed to model water hammer responses for various wellbore configurations and treatment characteristics. Insight from the modeling work was used to develop an optimal process of terminating fluid injection to obtain a consistent, identifiable oscillatory response for evaluating water hammer periodicity, decay rate, and oscillatory patterns. A completion database was engaged in a semi-automated process to evaluate numerous treatments. A data screening method was developed and implemented for enhancing interpretation reliability. Derived water hammer components were correlated to fracture intensity, well productivity and in certain cases, loss of treatment confinement to the intended treatment interval. Using the above process, thousands of hydraulic fracturing treatments were evaluated, and the results of that work are included in this study. The treatments were performed in wells based in Texas, South America, and Canada and completed in low permeability and unconventional reservoirs. The water hammer decay rate was determined to be a reliable indication of the system friction (friction in the wellbore and hydraulic fracture network) that drains energy from the water hammer pulse. In unconventional reservoirs characterized by small differences in the minimum and maximum horizontal stresses, high system friction correlated positively with fracture intensity/complexity and well performance. Results were constrained with instantaneous shut-in pressure (ISIP) and pressure falloff measurements to identify instances of direct communication with previously treated offset wellbores. The resulting analyses provided: – identification of enhanced-permeability intervals – indications of hydraulic fracture geometry – assessment of treatment modifications intended to enhance fracture complexity – identification of loss of treatment confinement to the intended interval – location of associated points of failure in the wellbore Topics covered in the paper include: Introduction  Joukowsky Equation  Period and Boundary Conditions Review of Prior Work on Water Hammer Analysis Shut-In Pressure Data, Analysis, and Model  Data collection frequency  Data issues and requirements  Water Hammer Analytical Method  Water Hammer Model Effects on Water hammer signature  Fluid properties  Step-down rate change and duration  Perforation friction Applications  Identification of Boundary Condition  Identification of Treatment Stage Isolation  Identification of Casing Failure Depth  Identification of Excess Period (Excess Length) Case Study – Water Hammer Data in an Unconventional Reservoir  Interpretation of frac geometry and friction in the fracture  Relationship to well productivity


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. D41-D48 ◽  
Author(s):  
Peng Zhang ◽  
Yaniv Brick ◽  
Mukul M. Sharma

The efficiency of a hydraulic fracture treatment depends primarily on the dimensions and orientation of propped fractures. We have developed a novel electrode-based resistivity tool concept for mapping proppant distribution in hydraulic fractures in steel-cased wellbores. The proposed tool configuration is shown to overcome the severe limitations of induction tools for the detection and resolution of propped fracture geometries in such wellbores. The concept makes use of an array of electrically insulating gap subsections, which are installed and cemented as permanent parts of the casing string, separating the casing sections. By imposing voltages on the insulating gaps, the conductive casing is excited directly, thus avoiding through-casing signal degradation caused by its high electrical conductivity. This allows us to detect subsurface fractures propped with conductive proppant. The envisioned measurements are performed by running a bottom-hole assembly into the fractured zone on a coiled tubing to impose a voltage across each insulating gap at a time, before and after hydraulic fracture operations. For each excited insulating gap, the voltages across all other insulating gaps are recorded by the electronics embedded in the insulating gaps. To interpret the envisioned measurements, a forward model of the tool, based on a finite volume method, is developed, and the design’s sensitivity to the fracture parameters is demonstrated via case studies. The results indicate that measurements made based on the proposed concept will be highly sensitive to a fracture’s location, size, and angle, and less sensitive to a fracture’s shape. Simulations also indicate that direct contact of the fracture with an excited casing section enables the differentiation of fractures of up to a 100 m radius. Fractures with angles greater than 30° or aspect ratios greater than two can also be distinguished from the ones orthogonal to the well or with an aspect ratio of one.


Sign in / Sign up

Export Citation Format

Share Document