fracture characterization
Recently Published Documents


TOTAL DOCUMENTS

689
(FIVE YEARS 127)

H-INDEX

37
(FIVE YEARS 5)

Author(s):  
Kourosh Khadivi ◽  
Mojtaba Alinaghi ◽  
Saeed Dehghani ◽  
Mehrbod Soltani ◽  
Hamed Hassani ◽  
...  

AbstractThe Asmari reservoir in Haftkel field is one of the most prolific naturally fractured reservoirs in the Zagros folded zone in the southwest of Iran. The primary production was commenced in 1928 and continued until 1976 with a plateau rate of 200,000 bbl/day for several years. There was an initial gas cap on the oil column. Gas injection was commenced in June 1976 and so far, 28% of the initial oil in place have been recovered. As far as we concerned, fracture network is a key factor in sustaining oil production; therefore, it needs to be characterized and results be deployed in designing new wells to sustain future production. Multidisciplinary fracture evaluation from well to reservoir scale is a great privilege to improve model’s accuracy as well as enhancing reliability of future development plan in an efficient manner. Fracture identification and modeling usually establish at well scale and translate to reservoir using analytical or numerical algorithms with the limited tie-points between wells. Evaluating fracture network from production data can significantly improve conventional workflow where limited inter-well information is available. By incorporating those evidences, the fracture modeling workflow can be optimized further where lateral and vertical connectivity is a concern. This paper begins with the fracture characterization whereby all available data are evaluated to determine fracture patterns and extension of fracture network across the field. As results, a consistent correlation is obtained between the temperature gradient and productivity of wells, also convection phenomenon is confirmed. The findings of this section help us in better understanding fracture network, hydrodynamic communication and variation of temperature. Fracture modeling is the next step where characteristics of fractures are determined according to the structural geology and stress directions. Also, the fault’s related fractures and density of fractures are determined. Meanwhile, the results of data evaluation are deployed into the fracture model to control distribution and characteristics of fracture network, thereby a better representation is obtained that can be used for evaluating production data and optimizing development plan.


2022 ◽  
Author(s):  
W. Krissat ◽  
A. Mukherjee ◽  
M. Paydayesh ◽  
A. Glushchenko ◽  
Y. Prasetyo Utami ◽  
...  

2021 ◽  
Author(s):  
Radhika Patro ◽  
Manas Mishra ◽  
Hemlata Chawla ◽  
Sambhaji Devkar ◽  
Mrinal Sinha ◽  
...  

Abstract Fractures are the prime conduits of flow for hydrocarbons in reservoir rocks. Identification and characterization of the fracture network yields valuable information for accurate reservoir evaluation. This study aims to portray the benefits and limitations for various existing fracture characterization methods and define strategic workflows for automated fracture characterization targeting both conventional and unconventional reservoirs separately. While traditional seismic provides qualitative information of fractures and faults on a macro scale, acoustics and other petrophysical logs provide a more comprehensive picture on a meso and micro level. High resolution image logs, with shallow depth of investigation are considered the industry standard for analysis of fractures. However, it is imperative to understand the framework of fracture in both near and far field. Various reservoir-specific collaborative workflows have been elucidated for a consistent evaluation of fracture network, results of which are further segregated using class-based machine learning techniques. This study embarks on understanding the critical requirements for fracture characterization in different lithological settings. Conventional reservoirs have good intrinsic porosity and permeability, yet presence of fractures further enhances the flow capacity. In clastic reservoirs, fractures provide an additional permeability assist to an already producible reservoir. In carbonate reservoirs, overall reservoir and production quality exclusively depends on presence of extensive fracture network as it quantitatively controls the fluid flow interactions among otherwise isolated vugs. Devoid of intrinsic porosity and permeability, the presence of open-extensive fractures is even more critical in unconventional reservoirs such as basement, shale-gas/oil and coal-bed methane, since it demarcates the reservoir zone and defines the economic viability for hydrocarbon exploration in reservoirs. Different forward modeling approaches using the best of conventional logs, borehole images, acoustic data (anisotropy analysis, borehole reflection survey and stoneley waveforms) and magnetic resonance logs have been presented to provide reservoir-specific fracture characterization. Linking the resolution and depth of investigation of different available techniques is vital for the determination of openness and extent of the fractures into the formation. The key innovative aspect of this project is the emphasis on an end-to-end suitable quantitative analysis of flow contributing fractures in different conventional and unconventional reservoirs. Successful establishment of this approach capturing critical information will be the stepping-stone for developing machine learning techniques for field level assessment.


2021 ◽  
Author(s):  
Aishah Khalid Abdullah ◽  
Bhaskar Chakrabarti ◽  
Anas Mansor Al-Rukaibi ◽  
Talal Fahad Hadi Al-Adwani ◽  
Khushboo Havelia ◽  
...  

Abstract The State of Kuwait is currently appraising and successfully developing the tight carbonates reservoirs of Jurassic age, which have very low matrix porosity and permeability. These reservoirs are affected by several tectonic events of faulting and folding, resulting in the development of interconnected natural fractures, which provide effective permeability to the reservoirs in form of production sweet spots. The objective of the study was to characterize the natural fractures and identify high permeability sweet spots as being appraisal drilling locations in a discovered field with tight carbonate reservoirs. An integrated approach was undertaken for building a discrete fracture network model by characterizing the developed faulting- and folding-related fractures and combining all subsurface data from multiple domains. The reservoir structure has a doubly plunging anticline at the field level that is affected by several strike-slip faults. The faulting-related fractures were characterized by generating multiple structural seismic attributes, highlighting subsurface discontinuities and fracture corridors. The folding-related fractures were modelled using structural restoration techniques by computing stresses resulting from the anticlinal folding. The fracture model was built in addition to the 3D matrix property model for this tight carbonate reservoir, resulting in a dual-porosity-permeability static model. Analogue data was used to compute fracture aperture and expected fracture porosity and permeability, to identify the sweet spots. Structural seismic attributes such as Ant Tracking and Consistent Dip were successful in highlighting and identifying the fault lineaments and fracture corridors. The seismic discontinuities were validated using the fractures interpreted in the image log data from the predrilled wells before being input into the fracture model. Paleo stresses, derived from structural restoration, were combined with the reservoir facies and geomechanical properties to gain important insight into predicting fractures developed due to folding. Several fracture aperture scenarios were run to capture the uncertainty associated with the computed fracture porosity and permeability. Based on the results, several sweet spots were identified, which were ranked based on their extent and connected volumes of the various permeability cases. Identifying these sweet spots helped make informed decisions regarding well planning and drilling sequence. High-inclination wells aligned parallel to the present-day maximum stress direction were proposed, which would cut across corridors of the predicted open fractures. Through this study, comprehensive fracture characterization and fracture permeability understanding of the tight carbonates in the field under study were successfully achieved. This workflow will be useful in exploratory or appraisal fields with tight carbonate reservoirs.


2021 ◽  
pp. 1-14
Author(s):  
Yongzan Liu ◽  
Ge Jin ◽  
Kan Wu

Summary Rayleigh frequency-shift-based distributed strain sensing (RFS-based DSS) is a fiber-optic-based diagnostic technique, which can measure the strain change along the fiber. The spatial resolution of RFS-based DSS can be as low as 0.2 m, and the measuring sensitivity is less than 1 μɛ. Jin et al. (2021) presented a set of DSS data from the Hydraulic Fracture Test Site 2 project to demonstrate its potential to characterize near-wellbore fracture properties and to evaluate perforation efficiency during production and shut-in periods. Extensional strain changes are observed at locations around perforations during a shut-in period. At each perforation cluster, the observed responses of strain changes are significantly different. However, the driving mechanisms for the various observations are not clear, which hinders accurate interpretations of DSS data for near-wellbore fracture characterization. In this study, we applied a coupled flow and geomechanics model to simulate the observed DSS signals under various fractured reservoir conditions. The objective is to improve understanding of the DSS measurements and characterize near-wellbore fracture geometry. We used our in-house coupled flow and geomechanics simulator, which is developed by a combined finite-volume and finite-element method, to simulate strain responses within and near a fracture during shut-in and reopen periods. Local grid refinement was adopted around fractures and the wellbore, so that the simulated strain data can accurately represent the DSS measurements. The plane-strain condition is assumed. Numerical models with various fracture geometries and properties were constructed with representative parameters and in-situ conditions of the Permian Basin. The simulated well was shut-in for 4 days after producing 240 days, and reopened again for 1 day, following the actual field operation as shown in Jin et al. (2021). The characters of the strain changes along the fiber were analyzed and related to near-wellbore fracture properties. A novel diagnostic plot of relative strain change vs. wellbore pressure was presented to infer near-wellbore fracture characteristics. The impacts of permeability and size of the near-wellbore-stimulated region, fracture length, and near-perforation damage zone on strain responses were investigated through sensitivity analysis. The strain responses simulated by our model capture the observed signatures of field DSS measurements. During the shut-in period, clear positive strain changes are observed around the perforation locations, forming a “hump” signature. The shape of the “hump” region and peak value of each “hump” are dependent on the size and permeability of the near-wellbore fractured zone. Once the well is reopened, the strain changes decrease as the pressure drops. However, in one cycle of shut-in and reopen, the strain-pressure diagnostic plot shows path dependency. The discrepancy between the shut-in and reopen periods is highly influenced by the properties of near-wellbore fractured zones. The differences in the strain-pressure diagnostic plots can help to identify the conductive fractures. This study provides better understandings of the DSS measurements and their relations to the near-wellbore fracture properties, which is of practical importance for near-wellbore fracture characterization and completion/stimulation optimization.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sidong Fang ◽  
Yonghui Wu ◽  
Cheng Dai ◽  
Liqiang Ma ◽  
Hua Liu

Drilling infill well has been widely used in many plays to enhance the recovery of shale gas, but the infill well-caused fracture interference is a very important issue that should be taken into consideration. The well interference makes it difficult for the conventional models to make production predictions, fracture characterization, and production data analysis. In this paper, a semianalytical model is proposed for this purpose by discretizing the whole control volume of the parent and infill wells into several linear flow zones. In this way, three important issues can be further handled very naturally, including fracture connection between the parent and infill wells, different SRV properties for zones with different distances to the wellbore, and different production times for adjacent wellbores. The approximate expressions for different flow regimes are used in making production predictions in the time domain, and a flowing material balance method and a simple iteration are used to update the model parameters step by step. The proposed model is shown to be reasonable and accurate for handling multiwell interference problems after comparing with the commercial numerical simulator tNavigator. The synthetical cases show that the fracture parameters, SRV properties, and well infill time have a significant influence on the production performance of both the parent and infill wells. The results show that the production of the parent well will be dramatically enhanced when it is connected with the infill well via high-conductive hydraulic fractures. Longer unconnected fractures and more fracturing stages/clusters for the infill well will result in higher production for the infill well, but a negative effect is observed for the parent well. The permeability of the distant well SRV has a similar influence on the parent and infill wells. The results also show that late time well interference will result in a more significant increase in production rate on the log-log plots for the severe depletion around the parent well. Finally, the proposed model is used to analyze the production data of a field case from Fuling shale in Southwestern China. After analyzing the production data, several parameters can be obtained for both parent and infill wells, including the fracture lengths and conductivities, numbers of connected fractures, and the near and distant well permeabilities of the SRV. This gives a basic and practical technique for production prediction, formation and fracture evaluation, and well connectivity analysis from shale gas wells with fracture connection.


Sign in / Sign up

Export Citation Format

Share Document