scholarly journals NUMERICAL SOLUTION OF FOURTH-ORDER TIME-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

2015 ◽  
Vol 5 (1) ◽  
pp. 52-63 ◽  
Author(s):  
M. Javidi ◽  
◽  
Bashir Ahmad ◽  
Author(s):  
Mohamed Soror Abdel Latif ◽  
Abass Hassan Abdel Kader

In this chapter, the authors discuss the effectiveness of the invariant subspace method (ISM) for solving fractional partial differential equations. For this purpose, they have chosen a nonlinear time fractional partial differential equation (PDE) with variable coefficients to be investigated through this method. One-, two-, and three-dimensional invariant subspace classifications have been performed for this equation. Some new exact solutions have been obtained using the ISM. Also, the authors give a comparison between this method and the homogeneous balance principle (HBP).


2009 ◽  
Vol 64 (7-8) ◽  
pp. 420-430 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian

AbstractIn this work, the homotopy perturbation method proposed by Ji-Huan He [1] is applied to solve both linear and nonlinear boundary value problems for fourth-order partial differential equations. The numerical results obtained with minimum amount of computation are compared with the exact solution to show the efficiency of the method. The results show that the homotopy perturbation method is of high accuracy and efficient for solving the fourth-order parabolic partial differential equation with variable coefficients. The results show also that the introduced method is a powerful tool for solving the fourth-order parabolic partial differential equations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ahmad El-Ajou ◽  
Zeyad Al-Zhour

In this paper, we introduce a series solution to a class of hyperbolic system of time-fractional partial differential equations with variable coefficients. The fractional derivative has been considered by the concept of Caputo. Two expansions of matrix functions are proposed and used to create series solutions for the target problem. The first one is a fractional Laurent series, and the second is a fractional power series. A new approach, via the residual power series method and the Laplace transform, is also used to find the coefficients of the series solution. In order to test our proposed method, we discuss four interesting and important applications. Numerical results are given to authenticate the efficiency and accuracy of our method and to test the validity of our obtained results. Moreover, solution surface graphs are plotted to illustrate the effect of fractional derivative arrangement on the behavior of the solution.


Sign in / Sign up

Export Citation Format

Share Document