The Invariant Subspace Method for Solving Fractional Partial Differential Equations

Author(s):  
Mohamed Soror Abdel Latif ◽  
Abass Hassan Abdel Kader

In this chapter, the authors discuss the effectiveness of the invariant subspace method (ISM) for solving fractional partial differential equations. For this purpose, they have chosen a nonlinear time fractional partial differential equation (PDE) with variable coefficients to be investigated through this method. One-, two-, and three-dimensional invariant subspace classifications have been performed for this equation. Some new exact solutions have been obtained using the ISM. Also, the authors give a comparison between this method and the homogeneous balance principle (HBP).

Author(s):  
Sangita Choudhary ◽  
Varsha Daftardar-Gejji

AbstractIn this paper invariant subspace method has been employed for solving linear and non-linear time and space fractional partial differential equations involving Caputo derivative. A variety of illustrative examples are solved to demonstrate the effectiveness and applicability of the method.


Author(s):  
Sangita Choudhary ◽  
Varsha Daftardar-Gejji

In the present paper, invariant subspace method has been extended for solving systems of multi-term fractional partial differential equations (FPDEs) involving both time and space fractional derivatives. Further, the method has also been employed for solving multi-term fractional PDEs in [Formula: see text] dimensions. A diverse set of examples is solved to illustrate the method.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ahmad El-Ajou ◽  
Zeyad Al-Zhour

In this paper, we introduce a series solution to a class of hyperbolic system of time-fractional partial differential equations with variable coefficients. The fractional derivative has been considered by the concept of Caputo. Two expansions of matrix functions are proposed and used to create series solutions for the target problem. The first one is a fractional Laurent series, and the second is a fractional power series. A new approach, via the residual power series method and the Laplace transform, is also used to find the coefficients of the series solution. In order to test our proposed method, we discuss four interesting and important applications. Numerical results are given to authenticate the efficiency and accuracy of our method and to test the validity of our obtained results. Moreover, solution surface graphs are plotted to illustrate the effect of fractional derivative arrangement on the behavior of the solution.


2015 ◽  
Vol 19 (4) ◽  
pp. 1173-1176 ◽  
Author(s):  
Lian-Xiang Cui ◽  
Li-Mei Yan ◽  
Yan-Qin Liu

An improved extended tg-function method, which combines the fractional complex transform and the extended tanh-function method, is applied to find exact solutions of non-linear fractional partial differential equations. Generalized Hirota-Satsuma coupled Korteweg-de Vries equations are used as an example to elucidate the effectiveness and simplicity of the method.


2020 ◽  
Vol 5 (2) ◽  
pp. 35-48 ◽  
Author(s):  
Kamal Ait Touchent ◽  
Zakia Hammouch ◽  
Toufik Mekkaoui

AbstractIn this work, the well known invariant subspace method has been modified and extended to solve some partial differential equations involving Caputo-Fabrizio (CF) or Atangana-Baleanu (AB) fractional derivatives. The exact solutions are obtained by solving the reduced systems of constructed fractional differential equations. The results show that this method is very simple and effective for constructing explicit exact solutions for partial differential equations involving new fractional derivatives with nonlocal and non-singular kernels, such solutions are very useful to validate new numerical methods constructed for solving partial differential equations with CF and AB fractional derivatives.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

We implement relatively analytical methods, the homotopy perturbation method and the variational iteration method, for solving singular fractional partial differential equations of fractional order. The process of the methods which produce solutions in terms of convergent series is explained. The fractional derivatives are described in Caputo sense. Some examples are given to show the accurate and easily implemented of these methods even with the presence of singularities.


Sign in / Sign up

Export Citation Format

Share Document