new exact solutions
Recently Published Documents


TOTAL DOCUMENTS

677
(FIVE YEARS 134)

H-INDEX

35
(FIVE YEARS 6)

Author(s):  
Hengchun Hu ◽  
Runlan Sun

In this paper, the (3+1)-dimensional constant coefficient of Date–Jimbo–Kashiwara–Miwa (CCDJKM) equation is studied. All of the vector fields, infinitesimal generators, Lie symmetry reductions and different similarity reduction solutions are constructed. Due to the arbitrary functions in the infinitesimal generators, the (3+1)-dimensional CCDJKM equation can further be reduced to many (2+1)-dimensional partial differential equations. The explicit solutions of the similarity reduction equations, which include the quasi-periodic wave solution, the interaction solution between the periodic wave and a kink soliton and the trigonometric function solutions, are constructed with proper arbitrary function selection, and these new exact solutions are given out analytically and graphically.


2022 ◽  
Vol 30 (1) ◽  
pp. 335-361
Author(s):  
Melih Cinar ◽  
◽  
Ismail Onder ◽  
Aydin Secer ◽  
Mustafa Bayram ◽  
...  

<abstract><p>This paper considers deriving new exact solutions of a nonlinear complex generalized Zakharov dynamical system for two different definitions of derivative operators called conformable and $ M- $ truncated. The system models the spread of the Langmuir waves in ionized plasma. The extended rational $ sine-cosine $ and $ sinh-cosh $ methods are used to solve the considered system. The paper also includes a comparison between the solutions of the models containing separately conformable and $ M- $ truncated derivatives. The solutions are compared in the $ 2D $ and $ 3D $ graphics. All computations and representations of the solutions are fulfilled with the help of Mathematica 12. The methods are efficient and easily computable, so they can be applied to get exact solutions of non-linear PDEs (or PDE systems) with the different types of derivatives.</p></abstract>


2021 ◽  
pp. 8-25
Author(s):  
Zafer ÖZTÜRK ◽  
Sezer SORGUN ◽  
Halis BİLGİL ◽  
Ümmügülsüm ERDİNÇ

Author(s):  
S. Saha Ray ◽  
N. Das

In this article, the space-time fractional perturbed nonlinear Schrödinger equation (NLSE) in nanofibers is studied using the improved [Formula: see text] expansion method (ITEM) to explore new exact solutions. The perturbed nonlinear Schrodinger equation is a nonlinear model that occurs in nanofibers. The ITEM is an efficient method to obtain the exact solutions for nonlinear differential equations. With the help of the modified Riemann–Liouville derivative, an equivalent ordinary differential equation has been obtained from the nonlinear fractional differential equation. Several new exact solutions to the fractional perturbed NLSE have been devised using the ITEM, which is the latest proficient method for analyzing nonlinear partial differential models. The proposed method may be applied for searching exact travelling wave solutions of other nonlinear fractional partial differential equations that appear in engineering and physics fields. Furthermore, the obtained soliton solutions are depicted in some 3D graphs to observe the behaviour of these solutions.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Sunil D. Maharaj ◽  
Sudan Hansraj ◽  
Parbati Sahoo

AbstractThe static isotropic gravitational field equation, governing the geometry and dynamics of stellar structure, is considered in Einstein–Gauss–Bonnet (EGB) gravity. This is a nonlinear Abelian differential equation which generalizes the simpler general relativistic pressure isotropy condition. A gravitational potential decomposition is postulated in order to generate new exact solutions from known solutions. The conditions for a successful integration are examined. Remarkably we generate a new exact solution to the Abelian equation from the well known Schwarzschild interior seed metric. The metric potentials are given in terms of elementary functions. A physical analysis of the model is performed in five and six spacetime dimensions. It is shown that the six-dimensional case is physically more reasonable and is consistent with the conditions restricting the physics of realistic stars.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1429
Author(s):  
Muhammad Imran Asjad ◽  
Hamood Ur Rehman ◽  
Zunaira Ishfaq ◽  
Jan Awrejcewicz ◽  
Ali Akgül ◽  
...  

Nonlinear science is a fundamental science frontier that includes research in the common properties of nonlinear phenomena. This article is devoted for the study of new extended hyperbolic function method (EHFM) to attain the exact soliton solutions of the perturbed Boussinesq equation (PBE) and KdV–Caudery–Dodd–Gibbon (KdV-CDG) equation. We can claim that these solutions are new and are not previously presented in the literature. In addition, 2d and 3d graphics are drawn to exhibit the physical behavior of obtained new exact solutions.


Sign in / Sign up

Export Citation Format

Share Document