scholarly journals NUMERICAL SOLUTION OF THE TIME FRACTIONAL ORDER DIFFUSION EQUATION WITH MIXED BOUNDARY CONDITIONS USING MIMETIC FINITE DIFFERENCE

2020 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Mardo Gonzales Herrera ◽  
◽  
César E. Torres Ledesma ◽  
2009 ◽  
Vol 6 (3) ◽  
pp. 603-611
Author(s):  
Baghdad Science Journal

The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
Rui Du ◽  
Jincheng Wang ◽  
Dongke Sun

We have tested the accuracy and stability of lattice-Boltzmann (LB) simulations of the convection-diffusion equation in a two-dimensional channel flow with reactive-flux boundary conditions. We compared several different implementations of a zero-concentration boundary condition using the Two-Relaxation-Time (TRT) LB model. We found that simulations using an interpolation of the equilibrium distribution were more stable than those based on Multi-Reflection (MR) boundary conditions. We have extended the interpolation method to include mixed boundary conditions, and tested the accuracy and stability of the simulations over a range of Damköhler and Péclet numbers.


Author(s):  
Noorulhaq Ahmadi ◽  
Mohammadi Khan Mohammadi

In this work, we discuss a hybrid-based method on differential transforms and a finite difference method to numerical solution of convection–diffusion equation with Dirichlet’s type boundary conditions. The developed method is tested on various problems and the numerical results are reported in tabular and figure form. This method can be easily extended to handle non-linear convection–diffusion partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document