Development of Crystal-Laser Physics (Short Historical Remarks)

2020 ◽  
pp. 3-89
Author(s):  
Alexander A. Kaminskii
1991 ◽  
Vol 16 (6) ◽  
pp. 639-706 ◽  
Author(s):  
Alexander A. Kaminskii
Keyword(s):  

2010 ◽  
Vol 180 (6) ◽  
pp. 661 ◽  
Author(s):  
Ivan A. Shcherbakov
Keyword(s):  

Author(s):  
P. L. Kelley ◽  
J. J. Zayhowski
Keyword(s):  

Atoms ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Ryoichi Hajima

Generation of few-cycle optical pulses in free-electron laser (FEL) oscillators has been experimentally demonstrated in FEL facilities based on normal-conducting and superconducting linear accelerators. Analytical and numerical studies have revealed that the few-cycle FEL lasing can be explained in the frame of superradiance, cooperative emission from self-bunched systems. In the present paper, we review historical remarks of superradiance FEL experiments in short-pulse FEL oscillators with emphasis on the few-cycle pulse generation and discuss the application of the few-cycle FEL pulses to the scheme of FEL-HHG, utilization of infrared FEL pulses to drive high-harmonic generation (HHG) from gas and solid targets. The FEL-HHG enables one to explore ultrafast science with attosecond ultraviolet and X-ray pulses with a MHz repetition rate, which is difficult with HHG driven by solid-state lasers. A research program has been launched to develop technologies for the FEL-HHG and to conduct a proof-of-concept experiment of FEL-HHG.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 119
Author(s):  
Vincenzo Guerriero ◽  
Stefano Mazzoli

The effective stress principle (ESP) plays a basic role in geology and engineering problems as it is involved in fundamental issues concerning strain and failure of rock and soil, as well as of other porous materials such as concrete, metal powders, biological tissues, etc. Although since its introduction in the 1920s the main ESP aspects have been unravelled and theoretically derived, these do not appear to have been always entirely perceived by many in the science community dealing with ESP-related topics but having little familiarity with the complex theories of porous media and poroelasticity. The purpose of this review is to provide a guidance for the reader who needs an updated overview of the different theoretical and experimental approaches to the ESP and related topics over the past century, with particular reference to geological fracturing processes. We begin by illustrating, after some introductive historical remarks, the basic theory underlying the ESP, based on theory of elasticity methods. Then the different ESP-related theories and experimental results, as well as main interpretations of rock jointing and fracturing phenomena, are discussed. Two main classical works are then revisited, and a rigorous ESP proof is derived. Such a proof is aimed at geologists, engineers and geophysicists to become more familiar with theories of porous media and poroelasticity, being based on the classical theory of elasticity. The final part of this review illustrates some still open issues about faulting and hydraulic fracturing in rocks.


1992 ◽  
Author(s):  
Gregory B. Altshuler ◽  
Nickolai R. Belashenkov ◽  
Andrey V. Okishev

Sign in / Sign up

Export Citation Format

Share Document