short pulse
Recently Published Documents


TOTAL DOCUMENTS

4095
(FIVE YEARS 475)

H-INDEX

82
(FIVE YEARS 7)

2022 ◽  
Vol 148 ◽  
pp. 107745
Author(s):  
Kazuyuki Uno ◽  
Shohei Watarai ◽  
Yasushi Kodama ◽  
Kazuyuki Yoneya ◽  
Takahisa Jitsuno

Author(s):  
Leonard Doyle ◽  
Pooyan Khademi ◽  
Peter Hilz ◽  
Alexander Sävert ◽  
Georg Schaefer ◽  
...  

Abstract High power short pulse lasers provide a promising route to study the strong field effects of the quantum vacuum, for example by direct photon-photon scattering in the all-optical regime. Theoretical predictions based on realistic laser parameters achievable today or in the near future predict scattering of a few photons with colliding Petawatt laser pulses, requiring single photon sensitive detection schemes and very good spatio-temporal filtering and background suppression. In this article, we present experimental investigations of this photon background by employing only a single high power laser pulse tightly focused in residual gas of a vacuum chamber. The focal region was imaged onto a single-photon sensitive, time gated camera. As no detectable quantum vacuum signature was expected in our case, the setup allowed for characterization and first mitigation of background contributions. For the setup employed, scattering off surfaces of imperfect optics dominated below the residual gas pressures of 1×10-4mbar. Extrapolation of the findings to intensities relevant for photon-photon scattering studies is discussed.


2022 ◽  
Vol 130 (3) ◽  
pp. 414
Author(s):  
Р.М. Архипов ◽  
М.В. Архипов ◽  
А.В. Пахомов ◽  
Н.Н. Розанов

The Migdal sudden perturbation approximation is used to solve the problem of excitation and ionization particles in a one-dimensional potential of zero radius with an extremely short pulse. There is has only one energy level in such a one-dimensional the delta-shaped potential well. It is shown that for pulse durations shorter than the characteristic period of oscillations of the wave function of the particle in the bound state, the population of the level (and the probability of ionization) is determined by the ratio of the electric the area of ​​the pulse to the characteristic “scale” of the area inversely proportional to the area of ​​localization of the particle in a bound state.


2022 ◽  
pp. 100973
Author(s):  
C. Stoeckl ◽  
M.J. Bonino ◽  
C.Milehama S.P. Regan ◽  
W. Theobald ◽  
T. Ebert ◽  
...  

Author(s):  
Vladimir Bolyukh ◽  
Оleksandr Vinnichenko ◽  
Anatolii Omelchenko

The purpose of the study is to analyse the influence of the excitation of an induction-dynamic catapult of a ballistic laser gravimeter from an AC voltage source at different frequencies on electromechanical indicators that provide a reduced value of the auto seismic component of error in measuring the gravitational acceleration g due to a decrease in the recoil force. A mathematical model of the gravimeter catapult when excited from an AC voltage source is proposed, taking into account the interrelated electrical, magnetic and mechanical processes. The nature of the electromechanical processes in the catapult of the gravimeter with such excitation has been established. It is shown that a phase shift occurs between the currents in active elements, as a result of which positive (repulsive) pulses of the electrodynamic force alternate with negative (attractive) pulses of force. A criterion for the efficiency of the gravimeter catapult has been introduced, taking into account the maximum value of push of the test body at the smallest values of the electrodynamic force and current of the inductor winding. It was found that the highest efficiency of the gravimeter catapult is provided at a frequency of 250 Hz, at which the catapult efficiency is 3.5 times higher than at a frequency of 50 Hz. It is shown that the transition from the method of excitation of an induction-dynamic catapult with one short pulse to excitation from an AC voltage source makes it possible to reduce the uncertainty in measuring the gravitational acceleration.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhenzhong Zuo ◽  
Kaile Wang ◽  
Haowei Chen ◽  
Baole Lu ◽  
Jintao Bai

Since 2011, when Kir’yanov et al. first reported a new wavelength self-sweeping ytterbium-doped fiber laser that does not rely on any tuning element but only on the dynamic induced grating generated in the gain fiber by the standing wave resonator structure, the self-sweeping effect based on fiber waveguides has been extensively studied, leading to great progress in fundamental physics and other applications of self-sweeping fiber lasers. Different doped fiber lasers have not only achieved the self-sweeping effect, but also observed new phenomena such as anomalous self-sweeping and continuous pulses. Due to their remarkable spectral and pulsed characteristics, self-sweeping fiber lasers have been widely used in spectral detection, fiber sensing and short pulse synthesis. In this paper, we will introduce the classification of different doped self-sweeping fiber lasers, summarize their different implementations, and introduce their self-sweeping laws, pulse characteristics, recent progress of applications and future development prospects.


2021 ◽  
Author(s):  
Frank Paul ◽  
Livia Piermattei ◽  
Désirée Treichler ◽  
Lin Gilbert ◽  
Luc Girod ◽  
...  

Abstract. In the Karakoram, dozens of glacier surges occurred in the past two decades, making the region one of its global hot spots. Detailed analyses of dense time series from optical and radar satellite images revealed a wide range of surge behaviour in this region: from slow advances longer than a decade at low flow velocities to short, pulse-like advances over one or two years with high velocities. In this study, we present an analysis of three currently surging glaciers in the central Karakoram: North and South Chongtar Glaciers and an unnamed glacier referred to as NN9. All three glaciers flow towards the same region but differ strongly in surge behaviour. A full suite of satellite sensors and digital elevation models (DEMs) from different sources are used to (a) obtain comprehensive information about the evolution of the surges from 2000 to 2021 and (b) to compare and evaluate capabilities and limitations of the different satellite sensors for monitoring relatively small glaciers in steep terrain. A strongly contrasting evolution of advance rates and flow velocities is found, though the elevation change pattern is more similar. For example, South Chongtar Glacier had short-lived advance rates above 10 km y−1, velocities up to 30 m d−1 and surface elevations increased by 200 m. In contrast, the neighbouring and three times smaller North Chongtar Glacier had a slow and near linear increase of advance rates (up to 500 m y−1), flow velocities below 1 m d−1 and elevation increases up to 100 m. The even smaller glacier NN9 changed from a slow advance to a full surge within a year, reaching advance rates higher than 1 km y−1. It seems that, despite a similar climatic setting, different surge mechanisms are at play and a transition from one mechanism to another can occur during a single surge. The sensor inter-comparison revealed a high agreement across sensors for deriving flow velocities, but limitations are found on small and narrow glaciers in steep terrain, in particular for Sentinel-1. All investigated DEMs have the required accuracy to clearly show the volume changes during the surges and elevations from ICESat-2 ATL06 data fit neatly. We conclude that the available satellite data allow for a comprehensive observation of glacier surges from space when combining different sensors to determine the temporal evolution of length, elevation and velocity changes.


Sign in / Sign up

Export Citation Format

Share Document