On the Structure of Torsion-free Groups of Infinite Rank

2022 ◽  
pp. 65-75
Author(s):  
Paul Hill
1985 ◽  
Vol 32 (1) ◽  
pp. 129-145 ◽  
Author(s):  
C. Vinsonhaler ◽  
W. Wickless

In the study of torsion-free abelian groups of finite rank the notions of irreducibility, field of definition and E-ring have played significant rôles. These notions are tied together in the following theorem of R. S. Pierce:THEOREM. Let R be a ring whose additive group is torsion free finite rank irreducible and let Γ be the centralizer of QR as a QE(R) module. Then Γ is the unique smallest field of definition of R. Moreover, Γ ∩ R is an E-ring, in fact, it is a maximal E-subring of R.In this paper we consider extensions of Pierce's result to the infinite rank case. This leads to the concept of local irreducibility for torsion free groups.


2005 ◽  
Vol 33 (12) ◽  
pp. 4567-4585
Author(s):  
Howard Smith ◽  
Gunnar Traustason
Keyword(s):  

1974 ◽  
Vol 17 (3) ◽  
pp. 305-318 ◽  
Author(s):  
H. Heineken ◽  
J. S. Wilson

It was shown by Baer in [1] that every soluble group satisfying Min-n, the minimal condition for normal subgroups, is a torsion group. Examples of non-soluble locally soluble groups satisfying Min-n have been known for some time (see McLain [2]), and these examples too are periodic. This raises the question whether all locally soluble groups with Min-n are torsion groups. We prove here that this is not the case, by establishing the existence of non-trivial locally soluble torsion-free groups satisfying Min-n. Rather than exhibiting one such group G, we give a general method for constructing examples; the reader will then be able to see that a variety of additional conditions may be imposed on G. It will follow, for instance, that G may be a Hopf group whose normal subgroups are linearly ordered by inclusion and are all complemented in G; further, that the countable groups G with these properties fall into exactly isomorphism classes. Again, there are exactly isomorphism classes of countable groups G which have hypercentral nonnilpotent Hirsch-Plotkin radical, and which at the same time are isomorphic to all their non-trivial homomorphic images.


2007 ◽  
Vol 35 (3) ◽  
pp. 1055-1072 ◽  
Author(s):  
Ekaterina Blagoveshchenskaya ◽  
Lutz Strüngmann

2019 ◽  
Vol 12 (2) ◽  
pp. 590-604
Author(s):  
M. Fazeel Anwar ◽  
Mairaj Bibi ◽  
Muhammad Saeed Akram

In \cite{levin}, Levin conjectured that every equation is solvable over a torsion free group. In this paper we consider a nonsingular equation $g_{1}tg_{2}t g_{3}t g_{4} t g_{5} t g_{6} t^{-1} g_{7} t g_{8}t \\ g_{9}t^{-1} = 1$ of length $9$ and show that it is solvable over torsion free groups modulo some exceptional cases.


Sign in / Sign up

Export Citation Format

Share Document