Shear strength scale effect and the geometry of single and repeated rock joints

2020 ◽  
pp. 167-173 ◽  
Author(s):  
Yuzo Ohnishi ◽  
Hans Herda ◽  
Ryunoshin Yoshinaka
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xige Liu ◽  
Wancheng Zhu ◽  
Lankun Li

The scale effect of rock joint shear behavior is an important subject in the field of rock mechanics. There is yet a lack of consensus regarding whether the shear strength of rock joints increases, decreases, or remains unchanged as the joint size increases. To explore this issue, a series of repeated and enlarged numerical joint models were established in this study using the particle flow code (PFC2D). The microparameters were calibrated by uniaxial compression tests and shear tests on the concrete material under the constant normal loading (CNL) condition. Three different normal stresses were adopted in numerical shear tests with joint specimen lengths ranging from 100 mm to 800 mm. In addition to the commonly used CNL, the constant normal displacement (CND) condition was established for the purposes of this study; the CND can be considered an extreme case of the constant normal stiffness (CNS) condition. The shear stress-shear displacement curves changed from brittle failure to ductile failure alongside a gradual decrease in peak shear strength as joint length increased. That is, an overall negative scale effect was observed. Positive scale effect or no scale effect is also possible within a limited joint length range. A positive correlation was also observed between the peak shear displacement and joint length, and a negative correlation between shear stiffness and joint length. These above statements are applicable to both repeated and enlarged joints under either CNL or CND conditions. When the normal stress is sufficiently high and shear dilatancy displacement is very small, the shear behavior of rock joints under CNL and CND conditions seems to be consistent. However, for shear tests under low initial normal stress, the peak shear strength achieved under the CND condition is much higher than that under the CNL condition, as the normal stresses of enlarged joints increase to greater extent than the repeated ones during shearing.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Shigui Du ◽  
Huicai Gao ◽  
Yunjin Hu ◽  
Man Huang ◽  
Hua Zhao

The joint roughness coefficient (JRC) of rock joints has the characteristic of scale effect. JRC measured on small-size exposed rock joints should be evaluated by JRC scale effect in order to obtain the JRC of actual-scale rock joints, since field rock joints are hardly fully exposed or well saved. Based on the validity analysis of JRC scale effect, concepts of rate of JRC scale effect and effective length of JRC scale effect were proposed. Then, a graphic method for determination of the effective length of JRC scale effect was established. Study results show that the JRC of actual-scale rock joints can be obtained through a fractal model of JRC scale effect according to the statistically measured results of the JRC of small-size partial exposed rock joints and by the selection of fractal dimension of JRC scale effect and the determination of effective length of JRC scale effect.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Jiu-yang Huan ◽  
Ming-ming He ◽  
Zhi-qiang Zhang ◽  
Ning Li

The joint roughness coefficient (JRC) is an important factor affecting the shear properties of rock joints, and its accurate estimation is a challenging task in rock engineering. Existing JRC evaluation approaches such as the empirical comparison method and the statistical parameter method have some unresolved defects. In this study, a new method is proposed for JRC estimation to overcome the deficiencies of existing approaches based on back calculation of shear strength. First, the 10 standard roughness joints are established in numerical rock samples generated by the bonded particle method (BPM). Secondly, the microscopic parameters of the intact rock and joints are calibrated, and a series of direct shear tests of joint samples are carried out under different normal stresses. Finally, the empirical relationships between shear strength and JRC are proposed under high correlation conditions. The results show that the modified smooth joint model (MSJM) is proved to better simulate the mechanical properties of rough joints than the smooth joint model (SJM). When the shear strength of target joint is substituted in the corresponding relationship, the JRC of joint along the shear direction can be conveniently obtained. In addition, the JRC values of 10 standard roughness joint profiles under shear direction of from right to left (FRTL) are obtained. By estimating the JRC of 9 target joints in the literature, it can be seen that the new method proposed in this paper can well reflect the directionality of roughness and it is convenient to apply.


2003 ◽  
Vol 23 (7) ◽  
pp. 619-630 ◽  
Author(s):  
M.K Jafari ◽  
K Amini Hosseini ◽  
F Pellet ◽  
M Boulon ◽  
O Buzzi

Sign in / Sign up

Export Citation Format

Share Document