Newton’s method for k-Frechet differentiable operators

Author(s):  
Ioannis K. Argyros ◽  
A. Alberto Magreñanb
2016 ◽  
Vol 14 (02) ◽  
pp. 303-319
Author(s):  
Ioannis K. Argyros ◽  
Á. Alberto Magreñán

We present a semi-local convergence analysis of Newton’s method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Using center-Lipschitz condition on the first and the second Fréchet derivatives, we provide under the same computational cost a new and more precise convergence analysis than in earlier studies by Huang [A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993) 211–217] and Gutiérrez [A new semilocal convergence theorem for Newton’s method, J. Comput. Appl. Math. 79 (1997) 131–145]. Numerical examples where the old convergence criteria cannot apply to solve nonlinear equations but the new convergence criteria are satisfied are also presented at the concluding section of this paper.


2013 ◽  
Vol 06 (03) ◽  
pp. 1350026
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We expand the applicability of Newton's method for approximating a locally unique solution of a nonlinear equation in a Banach space setting. The nonlinear operator involved is twice Fréchet differentiable. We introduce more precise majorizing sequences than in earlier studied (see [Concerning the convergence and application of Newton's method under hypotheses on the first and second Fréchet derivative, Comm. Appl. Nonlinear Anal.11 (2004) 103–119; A new semilocal convergence theorem for Newton's method, J. Comp. Appl. Math.79 (1997) 131–145; A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math.47 (1993) 211–217]). This way, our convergence criteria can be weaker; the error estimates tighter and the information on the location of the solution more precise. Numerical examples are presented to show that our results apply in cases not covered before such as [Concerning the convergence and application of Newton's method under hypotheses on the first and second Fréchet derivative, Comm. Appl. Nonlinear Anal.11 (2004) 103–119; A new semilocal convergence theorem for Newton's method, J. Comp. Appl. Math.79 (1997) 131–145; A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math.47 (1993) 211–217].


2012 ◽  
Vol 3 (2) ◽  
pp. 167-169
Author(s):  
F.M.PATEL F.M.PATEL ◽  
◽  
N. B. PANCHAL N. B. PANCHAL

2012 ◽  
Vol 220-223 ◽  
pp. 2585-2588
Author(s):  
Zhong Yong Hu ◽  
Fang Liang ◽  
Lian Zhong Li ◽  
Rui Chen

In this paper, we present a modified sixth order convergent Newton-type method for solving nonlinear equations. It is free from second derivatives, and requires three evaluations of the functions and two evaluations of derivatives per iteration. Hence the efficiency index of the presented method is 1.43097 which is better than that of classical Newton’s method 1.41421. Several results are given to illustrate the advantage and efficiency the algorithm.


Sign in / Sign up

Export Citation Format

Share Document