Deeper Results on Linear Functionals

2021 ◽  
pp. 153-186
Author(s):  
James K. Peterson
Keyword(s):  
1965 ◽  
Vol 72 (7) ◽  
pp. 750
Author(s):  
W. Fulks

Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 107
Author(s):  
Juan Carlos García-Ardila ◽  
Francisco Marcellán

Given a quasi-definite linear functional u in the linear space of polynomials with complex coefficients, let us consider the corresponding sequence of monic orthogonal polynomials (SMOP in short) (Pn)n≥0. For a canonical Christoffel transformation u˜=(x−c)u with SMOP (P˜n)n≥0, we are interested to study the relation between u˜ and u(1)˜, where u(1) is the linear functional for the associated orthogonal polynomials of the first kind (Pn(1))n≥0, and u(1)˜=(x−c)u(1) is its Christoffel transformation. This problem is also studied for canonical Geronimus transformations.


1984 ◽  
Vol 16 (1) ◽  
pp. 11-12
Author(s):  
Yoshifusa Ito

Since the late 1960s Wiener's theory on the non-linear functionals of white noise has been widely applied to the construction of mathematical models of non-linear systems, especially in the field of biology. For such applications the main part is the measurement of Wiener's kernels, for which two methods have been proposed: one by Wiener himself and the other by Lee and Schetzen. The aim of this paper is to show that there is another method based on Hida's differential operator.


2000 ◽  
Vol 55 (6) ◽  
pp. 1143-1145
Author(s):  
V B Demidovich ◽  
G G Magaril-Il'yaev ◽  
V M Tikhomirov

1992 ◽  
Vol 34 (2) ◽  
pp. 175-188
Author(s):  
Neill Robertson

By the term “locally convex space”, we mean a locally convex Hausdorff topological vector space (see [17]). We shall denote the algebraic dual of a locally convex space E by E*, and its topological dual by E′. It is convenient to think of the elements of E as being linear functionals on E′, so that E can be identified with a subspace of E′*. The adjoint of a continuous linear map T:E→F will be denoted by T′:F′→E′. If 〈E, F〈 is a dual pair of vector spaces, then we shall denote the corresponding weak, strong and Mackey topologies on E by α(E, F), β(E, F) and μ(E, F) respectively.


1999 ◽  
Vol 127 (5) ◽  
pp. 1437-1441
Author(s):  
C. Benítez ◽  
Manuel Fernández ◽  
María L. Soriano
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document