scholarly journals Sustainability Appraisal Of Residential Energy Demand And Supply: A Life Cycle Approach Including Heating, Electricity, Embodied Energy And Mobility

2015 ◽  
pp. 319-348
Author(s):  
Patxi Hernandez ◽  
Paul Kenny

Building energy performance regulations and standards around the world are evolving aiming to reduce the energy use in buildings. As we move towards zero energy buildings, the embodied energy of construction materials and energy systems becomes more important, as it represents a high percentage of the overall life cycle energy use of a building. However, this issue is still ignored by many regulations and certification methods, as happens with the European Energy Performance of Buildings Directive (EPBD), which focuses on the energy used in operation. This paper analyses a typical house designed to comply with Irish building regulations, calculating its energy use for heating and how water with the Irish national calculation tool, which uses a methodology in line with the EPBD. A range of measures to reduce the energy performance in use of this typical house are proposed, calculating the reduced energy demand and moving towards a zero energy demand building. A life-cycle approach is added to the analysis, taking into account the differential embodied energy of the implemented measures in relation to the typical house base-case, annualizing the differential embodied energy and re-calculating the overall energy use. The paper discusses how a simplified approach for accounting embodied energy of materials could be useful in a goal to achieve the lowest life-cycle energy use in buildings, and concludes with a note on how accounting for embodied energy is a key element when moving towards zero energy buildings.


2021 ◽  
Vol 167 (1-2) ◽  
Author(s):  
Jens Ewald ◽  
Thomas Sterner ◽  
Eoin Ó Broin ◽  
Érika Mata

AbstractA zero-carbon society requires dramatic change everywhere including in buildings, a large and politically sensitive sector. Technical possibilities exist but implementation is slow. Policies include many hard-to-evaluate regulations and may suffer from rebound mechanisms. We use dynamic econometric analysis of European macro data for the period 1990–2018 to systematically examine the importance of changes in energy prices and income on residential energy demand. We find a long-run price elasticity of −0.5. The total long-run income elasticity is around 0.9, but if we control for the increase in income that goes towards larger homes and other factors, the income elasticity is 0.2. These findings have practical implications for climate policy and the EU buildings and energy policy framework.


Author(s):  
Xavier Labandeira ◽  
J. Maria Labeaga Azcona ◽  
Miguel Rodr�guez M�ndez

Sign in / Sign up

Export Citation Format

Share Document