Seismic response history analysis including out-of-plane collapse of unreinforced masonry infill walls in RC frame structures

2016 ◽  
pp. 1235-1244 ◽  
Author(s):  
F. Longo ◽  
L. Wiebe ◽  
F. da Porto ◽  
C. Modena
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Panagiotis G. Asteris ◽  
Athanasios K. Tsaris ◽  
Liborio Cavaleri ◽  
Constantinos C. Repapis ◽  
Angeliki Papalou ◽  
...  

The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural networks (ANNs) are used to predict the fundamental period of infilled reinforced concrete (RC) structures. For the training and the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNs for the prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its value.


2013 ◽  
Vol 56 ◽  
pp. 417-430 ◽  
Author(s):  
Charilaos A. Maniatakis ◽  
Ioannis N. Psycharis ◽  
Constantine C. Spyrakos

2011 ◽  
Vol 117-119 ◽  
pp. 288-294
Author(s):  
Xiao Ying Gong ◽  
Jun Wu Dai

Many RC frame structures were severely damaged or collapsed in some layer. The phenomenon was significantly different from the expected failure mode in seismic design code. This paper comprehensively sums up the earthquake characteristics of masonry infilled RC frame structures. Based on an investigation of a masonry infilled RC frame structure damaged in the earthquake area, conduct the research on frail-layer caused by infill walls uneven decorated. On the hypothesis of keeping the main load-bearing component invariant, two models were considered, i. e. frame with floor slab, and frame with both floor slab and infill wall. Furthermore, divide them into groups of the bottom, the middle and the top frail-layer to discuss by changing the arrange of infill wall. Time history analyses using three-dimensional sophisticated finite element method were conducted. The major findings are: 1)infill walls may significantly alter the failure mechanism of the RC frames. 2)controlling the initial interlayers lateral stiffness ratio in a reasonable range is an effective method to avoid frail-layer damage. These findings suggest that the effects of infill wall should be considered in seismic design, keep the initial interlayers lateral stiffness ratio less than the paper suggested, and the structural elasto-plastic analysis model should take slabs and infill walls into account.


2017 ◽  
Vol 199 ◽  
pp. 693-698 ◽  
Author(s):  
M. Lönhoff ◽  
C. Dobrowolski ◽  
H. Sadegh-Azar

Sign in / Sign up

Export Citation Format

Share Document