masonry infill
Recently Published Documents


TOTAL DOCUMENTS

320
(FIVE YEARS 111)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
pp. 503
Author(s):  
João Leite ◽  
Paulo B. Lourenço ◽  
Nuno Mendes

Several factors influence the behaviour of masonry infilled frames, which have been the subject of previous research with moderate success. The new generation of European design standards imposes the need to prevent the brittle collapse of infills and makes the structural engineer accountable for this requirement, yet it fails to provide sufficient information for masonry infill design. The present study aimed to compare experimental results with the provisions of the standard for the computation of the demand and capacity of infilled frames. Three reinforced concrete buildings with different infill solutions were constructed at a 1:1.5 scale. The infill walls were tested until collapse, or severe damage, using the shake table of the National Laboratory for Civil Engineering, Portugal, and their response was measured using accelerometers attached to the walls. The European normative standard provides results close to the experimental ones as far as demand and capacity are concerned. Based on the experiments, two design proposals for infill walls are presented here, one for the definition of the natural frequency of the infills, and another for a reduction factor to account for the presence of openings in the out-of-plane capacity of infills.


Author(s):  
S. Venkatesh ◽  
Ms. T. Savithra

Generally RC framed structures are designed without regards to structural action of masonry infill walls present. Masonry infill walls are widely used as partitions. These buildings are generally designed as framed structures without regard to structural action of masonry infill walls. They are considered as non- structural elements. RC frame building with open first storey is known as soft storey, which performs poorly during strong earthquake shaking. Past earthquakes are evident that collapses due to soft storeys are most often in RC buildings. In the soft storey, columns are severely stressed and unable to provide adequate shear resistance during the earthquake. Hence a combination of two structural system components i.e. Rigid frames and RC shear walls or Rigid frames and Bracings leads to a highly efficient system in which shear wall and bracings resist the majority of the lateral loads and the frame supports majority of the gravity loads.


Author(s):  
Sujan Pradhan ◽  
Yuebing Li ◽  
Yasushi Sanada

AbstractMany reinforced concrete (RC) frame buildings in Nepal were significantly damaged by the 7.8 magnitude (Mw) earthquake in Nepal on April 25, 2015. To contribute to mitigate future earthquake disasters, the current study focuses on two specific characteristics of residential RC frame buildings in the capital city of Nepal, Kathmandu: the application of brick masonry infill to exterior and partition walls, and the conventional vertical extension of building stories different from the design. Although these factors are likely to significantly affect the seismic performance, their effects are frequently neglected in practical design and construction management in developing countries. Hence, the main objective of this research is to investigate and clarify the seismic performance of RC frame buildings considering the above factors through experimental and numerical investigations. The present paper (1) briefly introduces the characteristics of a typical residential RC frame building in Kathmandu, (2) illustrates the numerical modeling parametrically considering three different contributions of brick masonry infill walls and (3) investigates the seismic performance of the RC frame building considering the effects of the infill wall modeling and the vertical extension through numerical analyses. Consequently, it was found that the consideration of the in-plane stiffness and strength of the infill walls resulted in both positive and negative contributions to the seismic performance of low-rise (up to three stories) and medium-rise (more than three stories) buildings respectively, quantitatively clarifying significant effects of the presence of infill and the vertical extension. These findings contribute to provide realistic solutions to upgrade the seismic performance by utilizing or removing the brick masonry infill walls or by managing the building stories to mitigate future earthquake disasters on typical RC frame buildings not only in Nepal but also in other countries with similar backgrounds.


2021 ◽  
Author(s):  
Marko Marinković ◽  
Markel Baballëku ◽  
Brisid Isufi ◽  
Nikola Blagojević ◽  
Ivan Milićević ◽  
...  

Abstract This paper documents performance of cast-in-place reinforced concrete (RC) buildings in the Durrës during Albania earthquake of 26th of November 2019 (MW 6.4). Both mid- and high-rise RC buildings were affected by the earthquake, experiencing structural and/or non-structural damage and even collapse in some cases. The authors performed a reconnaissance study after the earthquake and were involved in seismic assessment of buildings in the affected area. Besides the observations related to physical damage related to RC buildings, the paper also presents results of a statistical analysis of damaged RC buildings in the Durrës city. The discussion in the paper is focused on damage patterns and failure mechanisms that are relevant for the seismic response of RC structures. Most common damage pattern is related to masonry infill walls, which experienced damage and failure in some cases, and affected the performance of adjacent RC columns due to the infill/frame interaction. Taller RC framed buildings (10 storeys and higher) were expected to have RC shear walls; however, these walls were reportedly absent in the damaged buildings of this type. In some cases, masonry infill walls (instead of RC shear walls) were used in the elevator shaft areas, which resulted in inadequate seismic performance. Two case study buildings were presented in detail to illustrate seismic behaviour of cast-in-place RC buildings. The case study is based on field observations after the earthquake and a detailed seismic assessment study. Finally, relevant lessons and recommendations are presented in light of the observed performance of RC buildings.


2021 ◽  
Vol 7 (11) ◽  
pp. 1853-1867
Author(s):  
Ali Zine ◽  
Abdelkrim Kadid ◽  
Abdallah Zatar

The present work concerns the numerical investigation of reinforced concrete frame buildings containing masonry infill panel under seismic loading that are widely used even in high seismicity areas. In seismic zones, these frames with masonry infill panels are generally considered as higher earthquake risk buildings. As a result there is a growing need to evaluate their level of seismic performance. The numerical modelling of infilled frames structures is a complex task, as they exhibit highly nonlinear inelastic behaviour, due to the interaction of the masonry infill panel and the surrounding frame. The available modelling approaches for masonry infill can be grouped into two principal types; Micro models and Macro models. A two dimensional model of the structure is used to carry out non-linear static analysis. Beams and columns are modelled as non-linear with lumped plasticity where the hinges are concentrated at both ends of the beams and the columns. This study is based on structures with design and detailing characteristics typical of Algerian construction model. In this regard, a non-linear pushover analysis has been conducted on three considered structures, of two, four and eight stories. Each structure is analysed as a bare frame and with two different infill configurations (totally infilled, and partially infilled). The main results that can be obtained from a pushover analysis are the capacity curves and the distribution of plastic hinges in structures. The addition of infill walls results in an increase in both the rigidity and strength of the structures. The results indicate that the presence of non-structural masonry infills can significantly modify the seismic response of reinforced concrete "frames". The initial rigidity and strength of the fully filled frame are considerably improved and the patterns of the hinges are influenced by structural elements type depending on the dynamic characteristics of the structures. Doi: 10.28991/cej-2021-03091764 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document