The Lower Limit of Cerebral Blood Flow Autoregulation Is Increased with Elevated Intracranial Pressure

2009 ◽  
Vol 108 (4) ◽  
pp. 1278-1283 ◽  
Author(s):  
Ken M. Brady ◽  
Jennifer K. Lee ◽  
Kathleen K. Kibler ◽  
Ronald B. Easley ◽  
Raymond C. Koehler ◽  
...  
1985 ◽  
Vol 19 (4) ◽  
pp. 138A-138A
Author(s):  
Joanne E Backofen ◽  
Cecil Borel ◽  
Raymond C Koehler ◽  
M Douglas Jones ◽  
Richard J Traystman ◽  
...  

2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Marike Zwienenberg ◽  
Kee D Kim ◽  
Kiarash Shahlaie

The management of traumatic brain injury focuses on the prevention of second insults, which most often occur because of a supply/demand mismatch of the cerebral metabolism. The healthy brain has mechanisms of autoregulation to match the cerebral blood flow to the cerebral metabolic demand. After trauma, these mechanisms are disrupted, leaving the patient susceptible to episodes of hypotension, hypoxemia, and elevated intracranial pressure. Understanding the normal and pathologic states of the cerebral blood flow is critical for understanding the treatment choices for a patient with traumatic brain injury. In this chapter, we discuss the underlying physiologic principles that govern our approach to the treatment of traumatic brain injury. This review contains 3 figures, 1 table and 12 references Key Words: cerebral autoregulation, cerebral blood flow, cerebral metabolic rate, intracranial pressure, ischemia, reactivity, vasoconstriction, vasodilation, viscosity


1998 ◽  
Vol 275 (1) ◽  
pp. H139-H144 ◽  
Author(s):  
Olivier Régrigny ◽  
Philippe Delagrange ◽  
Elizabeth Scalbert ◽  
Jeffrey Atkinson ◽  
Isabelle Lartaud-Idjouadiene

Because melatonin is a cerebral vasoconstrictor agent, we tested whether it could shift the lower limit of cerebral blood flow autoregulation to a lower pressure level, by improving the cerebrovascular dilatory reserve, and thus widen the security margin. Cerebral blood flow and cerebrovascular resistance were measured by hydrogen clearance in the frontal cortex of adult male Wistar rats. The cerebrovasodilatory reserve was evaluated from the increase in the cerebral blood flow under hypercapnia. The lower limit of cerebral blood flow autoregulation was evaluated from the fall in cerebral blood flow following hypotensive hemorrhage. Rats received melatonin infusions of 60, 600, or 60,000 ng ⋅ kg−1 ⋅ h−1, a vehicle infusion, or no infusion ( n= 9 rats per group). Melatonin induced concentration-dependent cerebral vasoconstriction (up to 25% of the value for cerebrovascular resistance of the vehicle group). The increase in vasoconstrictor tone was accompanied by an improvement in the vasodilatory response to hypercapnia (+50 to +100% vs. vehicle) and by a shift in the lower limit of cerebral blood flow autoregulation to a lower mean arterial blood pressure level (from 90 to 50 mmHg). Because melatonin had no effect on baseline mean arterial blood pressure, the decrease in the lower limit of cerebral blood flow autoregulation led to an improvement in the cerebrovascular security margin (from 17% in vehicle to 30, 55, and 55% in the low-, medium-, and high-dose melatonin groups, respectively). This improvement in the security margin suggests that melatonin could play an important role in the regulation of cerebral blood flow and may diminish the risk of hypoperfusion-induced cerebral ischemia.


2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Marike Zwienenberg ◽  
Kee D Kim ◽  
Kiarash Shahlaie

The management of traumatic brain injury focuses on the prevention of second insults, which most often occur because of a supply/demand mismatch of the cerebral metabolism. The healthy brain has mechanisms of autoregulation to match the cerebral blood flow to the cerebral metabolic demand. After trauma, these mechanisms are disrupted, leaving the patient susceptible to episodes of hypotension, hypoxemia, and elevated intracranial pressure. Understanding the normal and pathologic states of the cerebral blood flow is critical for understanding the treatment choices for a patient with traumatic brain injury. In this chapter, we discuss the underlying physiologic principles that govern our approach to the treatment of traumatic brain injury. This review contains 3 figures, 1 table and 12 references Key Words: cerebral autoregulation, cerebral blood flow, cerebral metabolic rate, intracranial pressure, ischemia, reactivity, vasoconstriction, vasodilation, viscosity


1976 ◽  
Vol 39 (4) ◽  
pp. 555-557 ◽  
Author(s):  
J V Jones ◽  
W Fitch ◽  
E T MacKenzie ◽  
S Strandgaard ◽  
A M Harper

2007 ◽  
Vol 102 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Michael Pedersen ◽  
Christian T. Brandt ◽  
Gitte M. Knudsen ◽  
Christian Østergaard ◽  
Peter Skinhøj ◽  
...  

We studied cerebral blood flow (CBF) autoregulation and intracranial pressure (ICP) during normo- and hyperventilation in a rat model of Streptococcus pneumoniae meningitis. Meningitis was induced by intracisternal injection of S. pneumoniae. Mean arterial blood pressure (MAP), ICP, cerebral perfusion pressure (CPP, defined as MAP − ICP), and laser-Doppler CBF were measured in anesthetized infected rats ( n = 30) and saline-inoculated controls ( n = 30). CPP was either incrementally reduced by controlled hemorrhage or increased by intravenous norepinephrine infusion. Twelve hours postinoculation, rats were studied solely during normocapnia, whereas rats studied after 24 h were exposed to either normocapnia or to acute hypocapnia. In infected rats compared with control rats, ICP was unchanged at 12 h but increased at 24 h postinoculation (not significant and P < 0.01, respectively); hypocapnia did not lower ICP compared with normocapnia. Twelve hours postinoculation, CBF autoregulation was lost in all infected rats but preserved in all control rats ( P < 0.01). Twenty-four hours after inoculation, 10% of infected rats had preserved CBF autoregulation during normocapnia compared with 80% of control rats ( P < 0.01). In contrast, 60% of the infected rats and 100% of the control rats showed an intact CBF autoregulation during hypocapnia ( P < 0.05 for the comparison of infected rats at normocapnia vs. hypocapnia). In conclusion, CBF autoregulation is lost both at 12 and at 24 h after intracisternal inoculation of S. pneumoniae in rats. Impairment of CBF autoregulation precedes the increase in ICP, and acute hypocapnia may restore autoregulation without changing the ICP.


Sign in / Sign up

Export Citation Format

Share Document