cerebral autoregulation
Recently Published Documents


TOTAL DOCUMENTS

1362
(FIVE YEARS 290)

H-INDEX

72
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Alicen A Whitaker ◽  
Eric D. Vidoni ◽  
Stacey E. Aaron ◽  
Adam G. Rouse ◽  
Sandra A Billinger

Purpose: Current sit-to-stand methods measuring dynamic cerebral autoregulation (dCA) do not capture the precise onset of the time delay (TD) response. Reduced sit-to-stand reactions in older adults and individuals post-stroke could inadvertently introduce variability, error, and imprecise timing. We applied a force sensor during a sit-to-stand task to more accurately determine how TD before dCA onset may be altered. Methods: Middle cerebral artery blood velocity (MCAv) and mean arterial pressure (MAP) were measured during two sit-to-stands separated by 15 minutes. Recordings started with participants sitting on a force-sensitive resistor for 60 seconds, then asked to stand for two minutes. Upon standing, the force sensor voltage immediately dropped and marked the exact moment of arise-and-off (AO). Time from AO until an increase in cerebrovascular conductance (CVC = MCAv/MAP) was calculated as TD. Results: We tested the sensor in 4 healthy young adults, 2 older adults, and 2 individuals post-stroke. Healthy young adults stood quickly and the force sensor detected a small change in TD compared to classically estimated AO, from verbal command to stand. When compared to the estimated AO, older adults had a delayed measured AO and TD decreased up to ~50% while individuals post-stroke had an early AO and TD increased up to ~14%. Conclusion: The transition reaction speed during the sit to stand has the potential to influence dCA metrics. As observed in the older adults and participants with stroke, this response may drastically vary and influence TD.


2022 ◽  
Vol 12 ◽  
Author(s):  
Agnieszka Uryga ◽  
Nathalie Nasr ◽  
Magdalena Kasprowicz ◽  
Karol Budohoski ◽  
Marek Sykora ◽  
...  

Introduction: Common consequences following aneurysmal subarachnoid hemorrhage (aSAH) are cerebral vasospasm (CV), impaired cerebral autoregulation (CA), and disturbance in the autonomic nervous system, as indicated by lower baroreflex sensitivity (BRS). The compensatory interaction between BRS and CA has been shown in healthy volunteers and stable pathological conditions such as carotid atherosclerosis. The aim of this study was to investigate whether the inverse correlation between BRS and CA would be lost in patients after aSAH during vasospasm. A secondary objective was to analyze the time-trend of BRS after aSAH.Materials and Methods: Retrospective analysis of prospectively collected data was performed at the Neuro-Critical Care Unit of Addenbrooke's Hospital (Cambridge, UK) between June 2010 and January 2012. The cerebral blood flow velocity (CBFV) was measured in the middle cerebral artery using transcranial Doppler ultrasonography (TCD). The arterial blood pressure (ABP) was monitored invasively through an arterial line. CA was quantified by the correlation coefficient (Mxa) between slow oscillations in ABP and CBFV. BRS was calculated using the sequential cross-correlation method using the ABP signal.Results: A total of 73 patients with aSAH were included. The age [median (lower-upper quartile)] was 58 (50–67). WFNS scale was 2 (1–4) and the modified Fisher scale was 3 (1–3). In the total group, 31 patients (42%) had a CV and 42 (58%) had no CV. ABP and CBFV were higher in patients with CV during vasospasm compared to patients without CV (p = 0.001 and p < 0.001). There was no significant correlation between Mxa and BRS in patients with CV, neither during nor before vasospasm. In patients without CV, a significant, although moderate correlation was found between BRS and Mxa (rS = 0.31; p = 0.040), with higher BRS being associated with worse CA. Multiple linear regression analysis showed a significant worsening of BRS after aSAH in patients with CV (Rp = −0.42; p < 0.001).Conclusions: Inverse compensatory correlation between BRS and CA was lost in patients who developed CV after aSAH, both before and during vasospasm. The impact of these findings on the prognosis of aSAH should be investigated in larger studies.


2022 ◽  
Author(s):  
Ling Peng ◽  
Dan Guo ◽  
Yinhui Shi ◽  
Jiapei Yang ◽  
Wei Wei

Abstract BackgroundImpairment of cerebral autoregulation (CA) has been observed in patients undergoing cardiopulmonary bypass (CPB), but little is known about its risks and associations with outcomes. The objective of this study was to analyze the risks of impaired CA, based on cerebral oximetry index (COx), in patients undergoing total aortic arch replacement with CPB and moderate hypothermic circulatory arrest (MHCA). We also evaluated the association between impaired CA and patient outcomes.MethodsOne hundred fifteen four adult patients who underwent total aortic arch replacement with stented elephant trunk implantation under CPB and MHCA at our hospital were retrospectively analyzed. Patients were defined as having new-onset impaired CA if post-CPB COx > 0.3, calculated based on a moving linear correlation coefficient between regional cerebral oxygen saturation (rScO2) and mean blood pressure (MAP). Pre- and intraoperative factors were tested for independent association with impaired CA. Postoperative outcomes were compared between patients with normal and impaired CA.ResultsIn our 154 patients, 46(29.9%) developed new-onset impaired CA after CPB with MHCA. Multivariate analysis revealed a prolonged low rScO2 (rScO2 <55%) independently associated with onset of impaired CA, and receiver operating charactoristic curve showed a cutoff value at 40 min (sensitivity, 89.5%; specificity, 68.0%). Compared with normal CA patients, those with impaired CA showed a significantly higher rates of in-hospital mortality and postoperative complications.ConclusionProlonged low rScO2 (rScO2 <55%) during aortic arch surgery was closely related to onset of impaired CA. Impaired CA remained associated with the increased rates of postoperative complications and in-hospital mortality.Trial registration: ChiCTR1800014545 with registered date 20/01/2018.


2021 ◽  
Vol 50 (1) ◽  
pp. 407-407
Author(s):  
Catherine Hassett ◽  
Danilo Cardim ◽  
Nina Zobenica-Moore ◽  
Joao Gomes

2021 ◽  
Vol 18 (14) ◽  
pp. 1067-1076
Author(s):  
Lucy C. Beishon ◽  
Kannakorn Intharakham ◽  
Victoria J. Haunton ◽  
Thompson G. Robinson ◽  
Ronney B. Panerai

Background: Dynamic cerebral autoregulation (dCA) remains intact in both ageing and dementia, but studies of neurovascular coupling (NVC) have produced mixed findings. Objective: We investigated the effects of task-activation on dCA in healthy older adults (HOA), and patients with mild cognitive impairment (MCI) and Alzheimer’s Disease (AD). Methods: Resting and task-activated data from thirty HOA, twenty-two MCI, and thirty-four AD were extracted from a database. The autoregulation index (ARI) was determined at rest and during five cognitive tasks from transfer function analysis. NVC responses were present where group-specific thresholds of cross-correlation peak function and variance ratio were exceeded. Cumulative response rate (CRR) was the total number of positive responses across five tasks and two hemispheres. Results: ARI differed between groups in dominant (p=0.012) and non-dominant (p=0.042) hemispheres at rest but not during task-activation (p=0.33). ARI decreased during language and memory tasks in HOA (p=0.002) but not in MCI or AD (p=0.40). There was a significant positive correlation between baseline ARI and CRR in all groups (r=0.26, p=0.018), but not within sub-groups. Conclusion: dCA efficiency was reduced in task-activation in healthy but not cognitively impaired participants. These results indicate differences in neurovascular processing in healthy older adults relative to cognitively impaired individuals.


Author(s):  
Ryan L. Melvin ◽  
Jayvee R. Abella ◽  
Raajen Patel ◽  
Joshua M. Hagood ◽  
Dan E. Berkowitz ◽  
...  

Author(s):  
Rachel J. Skow ◽  
Lawrence Labrecque ◽  
Jade A. Rosenberger ◽  
Patrice Brassard ◽  
Craig D. Steinback ◽  
...  

We performed a randomised controlled trial measuring dynamic cerebral autoregulation (dCA) using a sit-to-stand maneuver before (SS1) and following (SS2) an acute exercise test at 16-20 weeks gestation (trimester 2; TM2) and then again at 34-37 weeks gestation (third trimester; TM3). Following the first assessment, women were randomised into exercise training or control (standard care) groups; women in the exercise training group were prescribed moderate intensity aerobic exercise for 25-40 minutes on 3-4 days per week for 14±1weeks. Resting seated mean blood velocity in the middle cerebral artery (MCAvmean) was lower in TM3 compared to TM2 but not impacted by exercise training intervention. dCA was not impacted by gestational age, or exercise training during SS1. During SS2, dCA was altered such that there were greater absolute and relative decreases in mean arterial blood pressure (MAP) and MCAvmean, but this was not impacted by the intervention. There was also no difference in the relationship between the decrease in MCAvmean compared to the decrease in MAP (%/%), or the onset of the regulatory response with respect to acute exercise, gestational age, or intervention; however, rate of regulation was faster in women in the exercise group following acute exercise (interaction effect, p=0.048). These data highlight the resilience of the cerebral circulation in that dCA was well maintained or improved in healthy pregnant women between TM2 and TM3. However, future work addressing the impact of acute and chronic exercise on dCA in women who are at risk for cardiovascular complications during pregnancy is needed.


2021 ◽  
pp. 174749302110590
Author(s):  
Doug Campbell ◽  
Carolyn Deng ◽  
Fiona McBryde ◽  
Robyn Billing ◽  
William K Diprose ◽  
...  

Registration Australian New Zealand Clinical Trials Registry: ACTRN12619001274167p Rationale Cerebral blood flow is blood pressure-dependent when cerebral autoregulation is impaired. Cerebral ischemia and anesthetic drugs impair cerebral autoregulation. In ischemic stroke patients treated with endovascular thrombectomy, induced hypertension is a plausible intervention to increase blood flow in the ischemic penumbra until reperfusion is achieved. This could potentially reduce final infarct size and improve functional recovery. Aim To test if patients with large vessel occlusion stroke treated with endovascular thrombectomy will benefit from induced hypertension. Design Prospective, randomized, parallel group, open label, multicenter clinical trial with blinded assessment of outcomes. Procedures Patients with anterior circulation stroke treated with endovascular thrombectomy with general anesthesia within 6 h of symptom onset, and patients with ‘wake up’ stroke or presenting within 6 to 24 h with potentially salvageable tissue on computed tomography perfusion scanning, are included. Participants are randomized to a systolic blood pressure target of 140 mmHg or 170 mmHg from procedure initiation until recanalization. Methods to maintain the blood pressure are at the discretion of the procedural anesthesiologist. Study outcomes The primary efficacy outcome is improvement in disability measured by modified Rankin Scale score at 90 days. The primary safety outcome is all-cause mortality at 90 days. Analysis The Mann-Whitney U test will be used to test the ordinal shift in the seven-category modified Rankin Scale score. All-cause mortality will be estimated using the Kaplan-Meier method and compared using a log-rank test.


Sign in / Sign up

Export Citation Format

Share Document