simple random walk
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 33)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Ray Pfeiffer ◽  
Karen Teitel ◽  
Susan Wahab ◽  
Mahmoud Wahab

Previous research indicates that analysts’ forecasts are superior to time series models as measures of investors’ earnings expectations. Nevertheless, research also documents predictable patterns in analysts’ forecasts and forecast errors. If investors are aware of these patterns, analysts’ forecast revisions measured using the random walk expectation are an incomplete representation of changes in investors’ earnings expectations. Investors can use knowledge of errors and biases in forecasts to improve upon the simple random walk expectation by incorporating conditioning information. Using data from 2005 to 2015, we compare associations between market-adjusted stock returns and alternative specifications of forecast revisions to determine which best represents changes in investors’ earnings expectations. We find forecast revisions measured using a ‘bandwagon expectations’ specification, which includes two prior analysts’ forecast signals and provides the most improvement over random-walk-based revision measures. Our findings demonstrate benefits to considering information beyond the previously issued analyst forecast when representing investors’ expectations of analysts’ forecasts.


2021 ◽  
Vol 58 (4) ◽  
pp. 851-867
Author(s):  
Xiao Fang ◽  
Han L. Gan ◽  
Susan Holmes ◽  
Haiyan Huang ◽  
Erol Peköz ◽  
...  

AbstractA classical result for the simple symmetric random walk with 2n steps is that the number of steps above the origin, the time of the last visit to the origin, and the time of the maximum height all have exactly the same distribution and converge when scaled to the arcsine law. Motivated by applications in genomics, we study the distributions of these statistics for the non-Markovian random walk generated from the ascents and descents of a uniform random permutation and a Mallows(q) permutation and show that they have the same asymptotic distributions as for the simple random walk. We also give an unexpected conjecture, along with numerical evidence and a partial proof in special cases, for the result that the number of steps above the origin by step 2n for the uniform permutation generated walk has exactly the same discrete arcsine distribution as for the simple random walk, even though the other statistics for these walks have very different laws. We also give explicit error bounds to the limit theorems using Stein’s method for the arcsine distribution, as well as functional central limit theorems and a strong embedding of the Mallows(q) permutation which is of independent interest.


2021 ◽  
Vol 185 (2) ◽  
Author(s):  
Robert Fitzner ◽  
Remco van der Hofstad

AbstractWe study lattice trees (LTs) and animals (LAs) on the nearest-neighbor lattice $${\mathbb {Z}}^d$$ Z d in high dimensions. We prove that LTs and LAs display mean-field behavior above dimension $$16$$ 16 and $$17$$ 17 , respectively. Such results have previously been obtained by Hara and Slade in sufficiently high dimensions. The dimension above which their results apply was not yet specified. We rely on the non-backtracking lace expansion (NoBLE) method that we have recently developed. The NoBLE makes use of an alternative lace expansion for LAs and LTs that perturbs around non-backtracking random walk rather than around simple random walk, leading to smaller corrections. The NoBLE method then provides a careful computational analysis that improves the dimension above which the result applies. Universality arguments predict that the upper critical dimension, above which our results apply, is equal to $$d_c=8$$ d c = 8 for both models, as is known for sufficiently spread-out models by the results of Hara and Slade mentioned earlier. The main ingredients in this paper are (a) a derivation of a non-backtracking lace expansion for the LT and LA two-point functions; (b) bounds on the non-backtracking lace-expansion coefficients, thus showing that our general NoBLE methodology can be applied; and (c) sharp numerical bounds on the coefficients. Our proof is complemented by a computer-assisted numerical analysis that verifies that the necessary bounds used in the NoBLE are satisfied.


2021 ◽  
Author(s):  
Thi Thi Zin ◽  
Pyke Tin ◽  
Pann Thinzar Seint ◽  
Kosuke Sumi ◽  
Ikuo Kobayashi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew Chu ◽  
Greg Huber ◽  
Aaron McGeever ◽  
Boris Veytsman ◽  
David Yllanes

AbstractRandom walkers on a two-dimensional square lattice are used to explore the spatio-temporal growth of an epidemic. We have found that a simple random-walk system generates non-trivial dynamics compared with traditional well-mixed models. Phase diagrams characterizing the long-term behaviors of the epidemics are calculated numerically. The functional dependence of the basic reproductive number $$R_{0}$$ R 0 on the model’s defining parameters reveals the role of spatial fluctuations and leads to a novel expression for $$R_{0}$$ R 0 . Special attention is given to simulations of inter-regional transmission of the contagion. The scaling of the epidemic with respect to space and time scales is studied in detail in the critical region, which is shown to be compatible with the directed-percolation universality class.


2021 ◽  
Vol 58 (3) ◽  
pp. 805-829
Author(s):  
Allan Gut ◽  
Ulrich Stadtmüller

AbstractIn the classical simple random walk the steps are independent, that is, the walker has no memory. In contrast, in the elephant random walk, which was introduced by Schütz and Trimper [19] in 2004, the next step always depends on the whole path so far. Our main aim is to prove analogous results when the elephant has only a restricted memory, for example remembering only the most remote step(s), the most recent step(s), or both. We also extend the models to cover more general step sizes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Geoffroy Berthelot ◽  
Sonia Saïd ◽  
Vincent Bansaye

AbstractAnimal movement has been identified as a key feature in understanding animal behavior, distribution and habitat use and foraging strategies among others. Large datasets of invididual locations often remain unused or used only in part due to the lack of practical models that can directly infer the desired features from raw GPS locations and the complexity of existing approaches. Some of them being disputed for their lack of biological justifications in their design. We propose a simple model of individual movement with explicit parameters, based on a two-dimensional biased and correlated random walk with three forces related to advection (correlation), attraction (bias) and immobility of the animal. These forces can be directly estimated using individual data. We demonstrate the approach by using GPS data of 5 red deer with a high frequency sampling. The results show that a simple random walk template can account for the spatial complexity of wild animals. The practical design of the model is also verified for detecting spatial feature abnormalities and for providing estimates of density and abundance of wild animals. Integrating even more additional features of animal movement, such as individuals’ interactions or environmental repellents, could help to better understand the spatial behavior of wild animals.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 729
Author(s):  
Miquel Montero

Random walks with invariant loop probabilities comprise a wide family of Markov processes with site-dependent, one-step transition probabilities. The whole family, which includes the simple random walk, emerges from geometric considerations related to the stereographic projection of an underlying geometry into a line. After a general introduction, we focus our attention on the elliptic case: random walks on a circle with built-in reflexing boundaries.


Author(s):  
Charles Bordenave ◽  
Hubert Lacoin

Abstract It is a fact simple to establish that the mixing time of the simple random walk on a d-regular graph $G_n$ with n vertices is asymptotically bounded from below by $\frac {d }{d-2 } \frac {\log n}{\log (d-1)}$ . Such a bound is obtained by comparing the walk on $G_n$ to the walk on d-regular tree $\mathcal{T} _d$ . If one can map another transitive graph $\mathcal{G} $ onto $G_n$ , then we can improve the strategy by using a comparison with the random walk on $\mathcal{G} $ (instead of that of $\mathcal{T} _d$ ), and we obtain a lower bound of the form $\frac {1}{\mathfrak{h} }\log n$ , where $\mathfrak{h} $ is the entropy rate associated with $\mathcal{G} $ . We call this the entropic lower bound. It was recently proved that in the case $\mathcal{G} =\mathcal{T} _d$ , this entropic lower bound (in that case $\frac {d }{d-2 } \frac {\log n}{\log (d-1)}$ ) is sharp when graphs have minimal spectral radius and thus that in that case the random walk exhibits cutoff at the entropic time. In this article, we provide a generalisation of the result by providing a sufficient condition on the spectra of the random walks on $G_n$ under which the random walk exhibits cutoff at the entropic time. It applies notably to anisotropic random walks on random d-regular graphs and to random walks on random n-lifts of a base graph (including nonreversible walks).


Author(s):  
Cristian Favio Coletti ◽  
Lucas Roberto de Lima

We study the frog model on Cayley graphs of groups with polynomial growth rate $D \geq 3$. The frog model is an interacting particle system in discrete time. We consider that the process begins with a particle at each vertex of the graph and only one of these particles is active when the process begins. Each activated particle performs a simple random walk in discrete time activating the inactive particles in the visited vertices. We prove that the activation time of particles grows at least linearly and we show that in the abelian case with any finite generator set the set of activated sites has a limiting shape.


Sign in / Sign up

Export Citation Format

Share Document