scholarly journals Optimal stopping under model uncertainty: Randomized stopping times approach

2016 ◽  
Vol 26 (2) ◽  
pp. 1260-1295 ◽  
Author(s):  
Denis Belomestny ◽  
Volker Krätschmer
1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


1998 ◽  
Vol 35 (04) ◽  
pp. 856-872 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peskir

Explicit formulas are found for the payoff and the optimal stopping strategy of the optimal stopping problem supτ E (max0≤t≤τ X t − c τ), where X = (X t ) t≥0 is geometric Brownian motion with drift μ and volatility σ > 0, and the supremum is taken over all stopping times for X. The payoff is shown to be finite, if and only if μ < 0. The optimal stopping time is given by τ* = inf {t > 0 | X t = g * (max0≤t≤s X s )} where s ↦ g *(s) is the maximal solution of the (nonlinear) differential equation under the condition 0 < g(s) < s, where Δ = 1 − 2μ / σ2 and K = Δ σ2 / 2c. The estimate is established g *(s) ∼ ((Δ − 1) / K Δ)1 / Δ s 1−1/Δ as s → ∞. Applying these results we prove the following maximal inequality: where τ may be any stopping time for X. This extends the well-known identity E (sup t>0 X t ) = 1 − (σ 2 / 2 μ) and is shown to be sharp. The method of proof relies upon a smooth pasting guess (for the Stephan problem with moving boundary) and the Itô–Tanaka formula (being applied two-dimensionally). The key point and main novelty in our approach is the maximality principle for the moving boundary (the optimal stopping boundary is the maximal solution of the differential equation obtained by a smooth pasting guess). We think that this principle is by itself of theoretical and practical interest.


2010 ◽  
Vol 47 (04) ◽  
pp. 1072-1083 ◽  
Author(s):  
Pieter Allaart

Let (B t )0≤t≤T be either a Bernoulli random walk or a Brownian motion with drift, and let M t := max{B s: 0 ≤ s ≤ t}, 0 ≤ t ≤ T. In this paper we solve the general optimal prediction problem sup0≤τ≤T E[f(M T − B τ], where the supremum is over all stopping times τ adapted to the natural filtration of (B t ) and f is a nonincreasing convex function. The optimal stopping time τ* is shown to be of ‘bang-bang’ type: τ* ≡ 0 if the drift of the underlying process (B t ) is negative and τ* ≡ T if the drift is positive. This result generalizes recent findings of Toit and Peskir (2009) and Yam, Yung and Zhou (2009), and provides additional mathematical justification for the dictum in finance that one should sell bad stocks immediately, but keep good stocks as long as possible.


2000 ◽  
Vol 37 (01) ◽  
pp. 64-72 ◽  
Author(s):  
Robert Kühne ◽  
Ludger Rüschendorf

For i.i.d. random variables in the domain of attraction of a max-stable distribution with discount and observation costs we determine asymptotic approximations of the optimal stopping values and asymptotically optimal stopping times. The results are based on Poisson approximation of related embedded planar point processes. The optimal stopping problem for the limiting Poisson point processes can be reduced to differential equations for the boundaries. In several cases we obtain numerical solutions of the differential equations. In some cases the analysis allows us to obtain explicit optimal stopping values. This approach thus leads to approximate solutions of the optimal stopping problem of discrete time sequences.


2009 ◽  
Vol 41 (01) ◽  
pp. 131-153 ◽  
Author(s):  
F. Thomas Bruss ◽  
Guy Louchard

LetI1,I2,…,Inbe independent indicator functions on some probability spaceWe suppose that these indicators can be observed sequentially. Furthermore, letTbe the set of stopping times on (Ik),k=1,…,n, adapted to the increasing filtrationwhereThe odds algorithm solves the problem of finding a stopping time τ ∈Twhich maximises the probability of stopping on the lastIk=1, if any. To apply the algorithm, we only need the odds for the events {Ik=1}, that is,rk=pk/(1-pk), whereThe goal of this paper is to offer tractable solutions for the case where thepkare unknown and must be sequentially estimated. The motivation is that this case is important for many real-world applications of optimal stopping. We study several approaches to incorporate sequential information. Our main result is a new version of the odds algorithm based on online observation and sequential updating. Questions of speed and performance of the different approaches are studied in detail, and the conclusiveness of the comparisons allows us to propose always using this algorithm to tackle selection problems of this kind.


Sign in / Sign up

Export Citation Format

Share Document