scholarly journals Weak shape theorem in first passage percolation with infinite passage times

2016 ◽  
Vol 52 (3) ◽  
pp. 1351-1381
Author(s):  
Raphaël Cerf ◽  
Marie Théret
1985 ◽  
Vol 22 (4) ◽  
pp. 766-775
Author(s):  
Norbert Herrndorf

We consider first-passage percolation in an infinite horizontal strip of finite height. Using methods from the theory of Markov chains, we prove a central limit theorem for first-passage times, and compute the time constants for some special cases.


2015 ◽  
Vol 47 (02) ◽  
pp. 328-354
Author(s):  
C. Hirsch ◽  
D. Neuhäuser ◽  
C. Gloaguen ◽  
V. Schmidt

We consider Euclidean first passage percolation on a large family of connected random geometric graphs in the d-dimensional Euclidean space encompassing various well-known models from stochastic geometry. In particular, we establish a strong linear growth property for shortest-path lengths on random geometric graphs which are generated by point processes. We consider the event that the growth of shortest-path lengths between two (end) points of the path does not admit a linear upper bound. Our linear growth property implies that the probability of this event tends to zero sub-exponentially fast if the direct (Euclidean) distance between the endpoints tends to infinity. Besides, for a wide class of stationary and isotropic random geometric graphs, our linear growth property implies a shape theorem for the Euclidean first passage model defined by such random geometric graphs. Finally, this shape theorem can be used to investigate a problem which is considered in structural analysis of fixed-access telecommunication networks, where we determine the limiting distribution of the length of the longest branch in the shortest-path tree extracted from a typical segment system if the intensity of network stations converges to 0.


1980 ◽  
Vol 17 (4) ◽  
pp. 968-978 ◽  
Author(s):  
John C. Wierman

A generalization of first-passage percolation theory proves that the fundamental convergence theorems hold provided only that the time coordinate distribution has a finite moment of a positive order. The existence of a time constant is proved by considering first-passage times between intervals of sites, rather than the usual point-to-point and point-to-line first-passage times. The basic limit theorems for the related stochastic processes follow easily by previous techniques. The time constant is evaluated as 0 when the atom at 0 of the time-coordinate distribution exceeds½.


1980 ◽  
Vol 17 (04) ◽  
pp. 968-978 ◽  
Author(s):  
John C. Wierman

A generalization of first-passage percolation theory proves that the fundamental convergence theorems hold provided only that the time coordinate distribution has a finite moment of a positive order. The existence of a time constant is proved by considering first-passage times between intervals of sites, rather than the usual point-to-point and point-to-line first-passage times. The basic limit theorems for the related stochastic processes follow easily by previous techniques. The time constant is evaluated as 0 when the atom at 0 of the time-coordinate distribution exceeds½.


1977 ◽  
Vol 9 (2) ◽  
pp. 283-295 ◽  
Author(s):  
John C. Wierman

Several problems are considered in the theory of first-passage percolation on the two-dimensional integer lattice. The results include: (i) necessary and sufficient conditions for the existence of moments of first-passage times; (ii) determination of an upper bound for the time constant; (iii) an initial result concerning the maximum height of routes for first-passage times; (iv) ergodic theorems for a class of reach processes.


1998 ◽  
Vol 35 (03) ◽  
pp. 683-692 ◽  
Author(s):  
Olle Häggström ◽  
Robin Pemantle

An interacting particle system modelling competing growth on the ℤ2 lattice is defined as follows. Each x ∈ ℤ2 is in one of the states {0,1,2}. 1's and 2's remain in their states for ever, while a 0 flips to a 1 (a 2) at a rate equal to the number of its neighbours which are in state 1 (2). This is a generalization of the well-known Richardson model. 1's and 2's may be thought of as two types of infection, and 0's as uninfected sites. We prove that if we start with a single site in state 1 and a single site in state 2, then there is positive probability for the event that both types of infection reach infinitely many sites. This result implies that the spanning tree of time-minimizing paths from the origin in first passage percolation with exponential passage times has at least two topological ends with positive probability.


2015 ◽  
Vol 47 (2) ◽  
pp. 328-354 ◽  
Author(s):  
C. Hirsch ◽  
D. Neuhäuser ◽  
C. Gloaguen ◽  
V. Schmidt

We consider Euclidean first passage percolation on a large family of connected random geometric graphs in the d-dimensional Euclidean space encompassing various well-known models from stochastic geometry. In particular, we establish a strong linear growth property for shortest-path lengths on random geometric graphs which are generated by point processes. We consider the event that the growth of shortest-path lengths between two (end) points of the path does not admit a linear upper bound. Our linear growth property implies that the probability of this event tends to zero sub-exponentially fast if the direct (Euclidean) distance between the endpoints tends to infinity. Besides, for a wide class of stationary and isotropic random geometric graphs, our linear growth property implies a shape theorem for the Euclidean first passage model defined by such random geometric graphs. Finally, this shape theorem can be used to investigate a problem which is considered in structural analysis of fixed-access telecommunication networks, where we determine the limiting distribution of the length of the longest branch in the shortest-path tree extracted from a typical segment system if the intensity of network stations converges to 0.


2018 ◽  
Vol 50 (3) ◽  
pp. 858-886 ◽  
Author(s):  
Alexey Medvedev ◽  
Gábor Pete

Abstract One model of real-life spreading processes is that of first-passage percolation (also called the SI model) on random graphs. Social interactions often follow bursty patterns, which are usually modelled with independent and identically distributed heavy-tailed passage times on edges. On the other hand, random graphs are often locally tree-like, and spreading on trees with leaves might be very slow due to bottleneck edges with huge passage times. Here we consider the SI model with passage times following a power-law distribution ℙ(ξ>t)∼t-α with infinite mean. For any finite connected graph G with a root s, we find the largest number of vertices κ(G,s) that are infected in finite expected time, and prove that for every k≤κ(G,s), the expected time to infect k vertices is at most O(k1/α). Then we show that adding a single edge from s to a random vertex in a random tree 𝒯 typically increases κ(𝒯,s) from a bounded variable to a fraction of the size of 𝒯, thus severely accelerating the process. We examine this acceleration effect on some natural models of random graphs: critical Galton--Watson trees conditioned to be large, uniform spanning trees of the complete graph, and on the largest cluster of near-critical Erdős‒Rényi graphs. In particular, at the upper end of the critical window, the process is already much faster than exactly at criticality.


2011 ◽  
Vol 20 (3) ◽  
pp. 435-453 ◽  
Author(s):  
LEANDRO P. R. PIMENTEL

In this paper we study planar first-passage percolation (FPP) models on random Delaunay triangulations. In [14], Vahidi-Asl and Wierman showed, using sub-additivity theory, that the rescaled first-passage time converges to a finite and non-negative constant μ. We show a sufficient condition to ensure that μ>0 and derive some upper bounds for fluctuations. Our proofs are based on percolation ideas and on the method of martingales with bounded increments.


Sign in / Sign up

Export Citation Format

Share Document