scholarly journals On magic factors in Stein’s method for compound Poisson approximation

2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Fraser Daly
1998 ◽  
Vol 30 (02) ◽  
pp. 449-475 ◽  
Author(s):  
A. D. Barbour ◽  
Sergey Utev

The accuracy of compound Poisson approximation can be estimated using Stein's method in terms of quantities similar to those which must be calculated for Poisson approximation. However, the solutions of the relevant Stein equation may, in general, grow exponentially fast with the mean number of ‘clumps’, leading to many applications in which the bounds are of little use. In this paper, we introduce a method for circumventing this difficulty. We establish good bounds for those solutions of the Stein equation which are needed to measure the accuracy of approximation with respect to Kolmogorov distance, but only in a restricted range of the argument. The restriction on the range is then compensated by a truncation argument. Examples are given to show that the method clearly outperforms its competitors, as soon as the mean number of clumps is even moderately large.


2000 ◽  
Vol 32 (1) ◽  
pp. 19-38 ◽  
Author(s):  
A. D. Barbour ◽  
Marianne Månsson

Let n random points be uniformly and independently distributed in the unit square, and count the number W of subsets of k of the points which are covered by some translate of a small square C. If n|C| is small, the number of such clusters is approximately Poisson distributed, but the quality of the approximation is poor. In this paper, we show that the distribution of W can be much more closely approximated by an appropriate compound Poisson distribution CP(λ1, λ2,…). The argument is based on Stein's method, and is far from routine, largely because the approximating distribution does not satisfy the simplifying condition that iλi be decreasing.


2000 ◽  
Vol 32 (01) ◽  
pp. 19-38 ◽  
Author(s):  
A. D. Barbour ◽  
Marianne Månsson

Let n random points be uniformly and independently distributed in the unit square, and count the number W of subsets of k of the points which are covered by some translate of a small square C. If n|C| is small, the number of such clusters is approximately Poisson distributed, but the quality of the approximation is poor. In this paper, we show that the distribution of W can be much more closely approximated by an appropriate compound Poisson distribution CP(λ1, λ2,…). The argument is based on Stein's method, and is far from routine, largely because the approximating distribution does not satisfy the simplifying condition that iλ i be decreasing.


1998 ◽  
Vol 30 (2) ◽  
pp. 449-475 ◽  
Author(s):  
A. D. Barbour ◽  
Sergey Utev

The accuracy of compound Poisson approximation can be estimated using Stein's method in terms of quantities similar to those which must be calculated for Poisson approximation. However, the solutions of the relevant Stein equation may, in general, grow exponentially fast with the mean number of ‘clumps’, leading to many applications in which the bounds are of little use. In this paper, we introduce a method for circumventing this difficulty. We establish good bounds for those solutions of the Stein equation which are needed to measure the accuracy of approximation with respect to Kolmogorov distance, but only in a restricted range of the argument. The restriction on the range is then compensated by a truncation argument. Examples are given to show that the method clearly outperforms its competitors, as soon as the mean number of clumps is even moderately large.


1999 ◽  
Vol 8 (4) ◽  
pp. 335-346 ◽  
Author(s):  
PETER EICHELSBACHER ◽  
MAŁGORZATA ROOS

In the present paper we consider compound Poisson approximation by Stein's method for dissociated random variables. We present some applications to problems in system reliability. In particular, our examples have the structure of an incomplete U-statistics. We mainly apply techniques from Barbour and Utev, who gave new bounds for the solutions of the Stein equation in compound Poisson approximation in two recent papers.


Sign in / Sign up

Export Citation Format

Share Document